Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Int J Clin Pharmacol Ther ; 48(10): 670-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20875373

RESUMO

OBJECTIVES: Polyisoprenylated acylphloroglucinols have recently emerged as antitumoral agents. This study aims at elucidating the antiretroviral activity of two such compounds which were isolated from Caribbean propolis: 7-epi-nemorosone and plukenetione A, the structure of which is based on an adamantane moiety. Plukenetione A is for the first time shown to have antiretroviral activity. MATERIAL AND METHODS: The isolation of both small molecules was carried out using RP-HPLC. Their antiretroviral activity was studied based on lentiviral particles produced in HEK293T cells from the SIV-based vector VLDBH; their cytotoxicity was monitored by MTT proliferation assay. The antiviral activity of 7-epi-nemorosone was studied in CEMx174-SEAP infected with the HIV-1-strain pNL4.3wt. Reverse transcriptase inhibition was determined by a standard two-step RT-PCR using MMLV RT. RESULTS: 7-epi-nemorosone and plukenetione A were found to be potent antilentiviral agents in the employed system, inhibiting viral infection at concentrations below 1 µM/2 µM, respectively. Whereas 7-epi-nemorosone was not able to inhibit the reverse transcriptase in vitro (IC50 > 25 µM), plukenetione A effectively inhibited its enzymatic activity at an IC50 of 1.75 µM. CONCLUSIONS: Despite 7-epi-nemorosone and plukenetione A sharing some structural core elements, the mechanism of action involved in their antiretroviral activity seems to be different. We propose that 7-epi-nemorosone inhibits the viral replication by interrupting the Akt/PKB signaling cascade, as was demonstrated previously in various cell lines. Since plukenetione A effectively inhibits the enzymatic activity of MMLV reverse transcriptase at concentrations that show antilentiviral activity, we suggest that this small molecule acts by interfering with the enzyme's catalytic site.


Assuntos
Antivirais/farmacologia , Benzofenonas/farmacologia , Lentivirus/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Própole/química , Benzofenonas/química , Região do Caribe , Células Cultivadas , HIV-1/efeitos dos fármacos , Humanos , Compostos Policíclicos/química
3.
J Cell Mol Med ; 12(6B): 2598-608, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18194446

RESUMO

Neuroblastoma is the second most common solid tumour during childhood, characterized by rapid disease progression. Most children with metastasized neuroblastoma die despite intensive chemotherapy due to an intrinsic or acquired chemotherapy resistance. Thus, new therapeutic strategies are urgently needed. Here, we demonstrate that the novel compound nemorosone isolated from alcoholic extracts of Clusia rosea resins by reverse phase high pressure liquid chromatography (RP-HPLC) exerts cytotoxic activity in neuroblas-toma cell lines both parental and their clones selected for resistance against adriamycin, cisplatin, etoposide or 5-fluorouracil. Cell cycle studies revealed that nemorosone induces an accumulation in G0/G1- with a reduction in S-phase population combined with a robust up-regulation of p21Cip1. Furthermore, a dose-dependent apoptotic DNA laddering accompanied by an activation of caspase-3 activity was detected. Nemorosone induced a significant dephosphorylation of ERK1/2 in LAN-1 parental cells probably by the inhibition of its upstream kinase MEK1/2. No significant modulation of signal transducers JNK, p38 MAPK and Akt/PKB was detected. The enzymatic activity of immunoprecipitated Akt/PKB was strongly inhibited in vitro, suggesting that nemorosone exerts its anti-proliferative activity at least in part by targeting Akt/PKB in the cell lines studied. In addition, a synergistic effect with Raf-1 inhibitor BAY 43-9006 was found. Finally, nemorosone induced a considerable down-regulation of N-myc protein levels in parental LAN-1 and an etoposide resistant sub-line at the same drug-concentrations.


Assuntos
Benzofenonas/farmacologia , Neuroblastoma/patologia , Benzofenonas/isolamento & purificação , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/enzimologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA