Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371051

RESUMO

BACKGROUND: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS: By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS: These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.


Assuntos
Caspases , Cristalino , Humanos , Caspases/metabolismo , Membrana Celular/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Cristalino/metabolismo , Membranas/metabolismo
2.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 518-530, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204818

RESUMO

Chagas disease is a neglected tropical disease (NTD) caused by Trypanosoma cruzi, whilst leishmaniasis, which is caused by over 20 species of Leishmania, represents a group of NTDs endemic to most countries in the tropical and subtropical belt of the planet. These diseases remain a significant health problem both in endemic countries and globally. These parasites and other trypanosomatids, including T. theileri, a bovine pathogen, rely on cysteine biosynthesis for the production of trypanothione, which is essential for parasite survival in hosts. The de novo pathway of cysteine biosynthesis requires the conversion of O-acetyl-L-serine into L-cysteine, which is catalysed by cysteine synthase (CS). These enzymes present potential for drug development against T. cruzi, Leishmania spp. and T. theileri. To enable these possibilities, biochemical and crystallographic studies of CS from T. cruzi (TcCS), L. infantum (LiCS) and T. theileri (TthCS) were conducted. Crystal structures of the three enzymes were determined at resolutions of 1.80 Šfor TcCS, 1.75 Šfor LiCS and 2.75 Šfor TthCS. These three homodimeric structures show the same overall fold and demonstrate that the active-site geometry is conserved, supporting a common reaction mechanism. Detailed structural analysis revealed reaction intermediates of the de novo pathway ranging from an apo structure of LiCS and holo structures of both TcCS and TthCS to the substrate-bound structure of TcCS. These structures will allow exploration of the active site for the design of novel inhibitors. Additionally, unexpected binding sites discovered at the dimer interface represent new potential for the development of protein-protein inhibitors.


Assuntos
Doença de Chagas , Leishmaniose , Trypanosoma cruzi , Animais , Bovinos , Cisteína Sintase/metabolismo , Cisteína/metabolismo , Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia
3.
Protein Sci ; 32(3): e4585, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721347

RESUMO

Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/ß-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.


Assuntos
Peptidoglicano , Prófagos , Prófagos/metabolismo , Peptidoglicano/metabolismo , Cloreto de Sódio , Domínio Catalítico , Modelos Moleculares , Amidoidrolases/metabolismo , Parede Celular , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo
4.
PLoS Negl Trop Dis ; 15(11): e0009951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780470

RESUMO

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.


Assuntos
Antiprotozoários/uso terapêutico , Chalcona/metabolismo , Chalcona/farmacologia , Citosol/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Peroxidases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Células Cultivadas , Chalcona/administração & dosagem , Chalcona/análogos & derivados , Citosol/enzimologia , Citosol/parasitologia , Descoberta de Drogas , Humanos , Leishmania/classificação , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo
5.
Org Biomol Chem ; 19(42): 9211-9222, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34643629

RESUMO

The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione-S-transferase (AmGSTF1) as a functional biomarker of MHR in black-grass (Alopecurus myosuroides). This study provides further insights into the role of AmGSTF1 in MHR using a combination of chemical and structural biology. Crystal structures of wild-type AmGSTF1, together with two specifically designed variants that allowed the co-crystal structure determination with glutathione and a glutathione adduct of the AmGSTF1 inhibitor 4-chloro-7-nitro-benzofurazan (NBD-Cl) were obtained. These studies demonstrated that the inhibitory activity of NBD-Cl was associated with the occlusion of the active site and the impediment of substrate binding. A search for other selective inhibitors of AmGSTF1, using ligand-fishing experiments, identified a number of flavonoids as potential ligands. Subsequent experiments using black-grass extracts discovered a specific flavonoid as a natural ligand of the recombinant enzyme. A series of related synthetic flavonoids was prepared and their binding to AmGSTF1 was investigated showing a high affinity for derivatives bearing a O-5-decyl-α-carboxylate. Molecular modelling based on high-resolution crystal structures allowed a binding pose to be defined which explained flavonoid binding specificity. Crucially, high binding affinity was linked to a reversal of the herbicide resistance phenotype in MHR black-grass. Collectively, these results present a nature-inspired new lead for the development of herbicide synergists to counteract MHR in weeds.


Assuntos
Resistência a Herbicidas
6.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34114607

RESUMO

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Assuntos
Genoma Viral/genética , Metagenômica , Bioprospecção/organização & administração , Biologia Computacional , Bases de Dados Genéticas , Europa (Continente) , Fontes Hidrotermais/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroma/genética , Vírus/classificação , Vírus/genética
7.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 544-556, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135673

RESUMO

Eukaryotic Rab5s are highly conserved small GTPase-family proteins that are involved in the regulation of early endocytosis. Leishmania donovani Rab5a regulates the sorting of early endosomes that are involved in the uptake of essential nutrients through fluid-phase endocytosis. Here, the 1.80 Šresolution crystal structure of the N-terminal GTPase domain of L. donovani Rab5a in complex with GDP is presented. The crystal structure determination was enabled by the design of specific single-site mutations and two deletions that were made to stabilize the protein for previous NMR studies. The structure of LdRab5a shows the canonical GTPase fold, with a six-stranded central mixed ß-sheet surrounded by five α-helices. The positions of the Switch I and Switch II loops confirm an open conformation, as expected in the absence of the γ-phosphate. However, in comparison to other GTP-bound and GDP-bound homologous proteins, the Switch I region traces a unique disposition in LdRab5a. One magnesium ion is bound to the protein at the GTP-binding site. Molecular-dynamics simulations indicate that the GDP-bound structure exhibits higher stability than the apo structure. The GDP-bound LdRab5a structure presented here will aid in efforts to unravel its interactions with its regulators, including the guanine nucleotide-exchange factor, and will lay the foundation for a structure-based search for specific inhibitors.


Assuntos
Guanosina Difosfato/metabolismo , Leishmania donovani/enzimologia , Proteínas rab5 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Cristalografia por Raios X , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo
8.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 1028-1039, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31692476

RESUMO

As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPß were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 Å, respectively. XepA consists of two antiparallel ß-sandwich domains connected by a 30-amino-acid linker region. A pentamer of this protein adopts a unique dumbbell-shaped architecture consisting of two discs and a central tunnel. YomS (12.9 kDa per monomer), which is less than half the size of XepA (30.3 kDa), shows homology to the C-terminal part of XepA and exhibits a similar pentameric disc arrangement. Each ß-sandwich entity resembles the fold of typical cytoplasmic membrane-binding C2 domains. Only XepA exhibits distinct cytotoxic activity in vivo, suggesting that the N-terminal pentameric domain is essential for this biological activity. The biological and structural data presented here suggest that XepA disrupts the proton motive force of the cytoplasmatic membrane, thus supporting cell lysis.


Assuntos
Fagos Bacilares/metabolismo , Prófagos/metabolismo , Proteínas Virais/química , Bacillus subtilis/virologia , Clonagem Molecular , Cristalografia por Raios X/métodos , Estrutura Terciária de Proteína
9.
J Vis Exp ; (144)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30799847

RESUMO

The Horizon2020 Virus-X project was established in 2015 to explore the virosphere of selected extreme biotopes and discover novel viral proteins. To evaluate the potential biotechnical value of these proteins, the analysis of protein structures and functions is a central challenge in this program. The stability of protein sample is essential to provide meaningful assay results and increase the crystallizability of the targets. The thermal shift assay (TSA), a fluorescence-based technique, is established as a popular method for optimizing the conditions for protein stability in high-throughput. In TSAs, the employed fluorophores are extrinsic, environmentally-sensitive dyes. An alternative, similar technique is nano differential scanning fluorimetry (nanoDSF), which relies on protein native fluorescence. We present here a novel osmolyte screen, a 96-condition screen of organic additives designed to guide crystallization trials through preliminary TSA experiments. Together with previously-developed pH and salt screens, the set of three screens provides a comprehensive analysis of protein stability in a wide range of buffer systems and additives. The utility of the screens is demonstrated in the TSA and nanoDSF analysis of lysozyme and Protein X, a target protein of the Virus-X project.


Assuntos
Fluorometria/métodos , Estabilidade Proteica , Proteínas/química
10.
Drug Metab Rev ; 43(2): 266-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21425939

RESUMO

Discovered 40 years ago, plant glutathione transferases (GSTs) now have a well-established role in determining herbicide metabolism and selectivity in crops and weeds. Within the GST superfamily, the numerous and plant-specific phi (F) and tau (U) classes are largely responsible for catalyzing glutathione-dependent reactions with xenobiotics, notably conjugation leading to detoxification and, more rarely, bioactivating isomerizations. In total, the crystal structures of 10 plant GSTs have been solved and a highly conserved N-terminal glutathione binding domain and structurally diverse C-terminal hydrophobic domain identified, along with key coordinating residues. Unlike drug-detoxifying mammalian GSTs, plant enzymes utlilize a catalytic serine in place of a tyrosine residue. Both GSTFs and GSTUs undergo changes in structure during catalysis indicative of an induced fit mechanism on substrate binding, with an understanding of plant GST structure/function allowing these proteins to be engineered for novel functions in detoxification and ligand recognition. Several major crops produce alternative thiols, with GSTUs shown to use homoglutathione in preference to glutathione, in herbicide detoxification reactions in soybeans. Similarly, hydroxymethylglutathione is used, in addition to glutathione in detoxifying the herbicide fenoxaprop in wheat. Following GST action, plants are able to rapidly process glutathione conjugates by at least two distinct pathways, with the available evidence suggesting these function in an organ- and species-specific manner. Roles for GSTs in endogenous metabolism are less well defined, with the enzymes linked to a diverse range of functions, including signaling, counteracting oxidative stress, and detoxifying and transporting secondary metabolites.


Assuntos
Produtos Agrícolas/enzimologia , Glutationa Transferase/fisiologia , Inseticidas/metabolismo , Plantas Daninhas/enzimologia , Xenobióticos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/classificação , Glutationa Transferase/genética , Resistência a Herbicidas , Inseticidas/química , Desintoxicação Metabólica Fase II , Modelos Moleculares , Estrutura Molecular , Filogenia , Xenobióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...