Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 170: 532-539, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388321

RESUMO

Seaweed lectins are very promising biotechnological tools that also gain prominence when applied to the pharmacology field. The purpose of the present work was to isolate and characterize lectin from the red algae Amansia multifida and subsequently test it in general inflammation models. The lectin was purified by ion exchange chromatography, characterized with two-dimensional electrophoresis, automated analysis of amino acid sequences and circular dichroism spectroscopy. The pharmacological tests performed were paw edema induced by carrageenan or rapid inflammatory mediators, peritonitis induced by carrageenan and myeloperoxidase leukocyte count assays, glutathione and cytokine concentration. Our results have identified a 30 KDa molecular weight protein that presents a major secondary structure arranged in ß-strand elements (~43%). A fragment of 20 amino acid residues was sequenced and presented low identity to the known classes of lectins from marine alga. This lectin was able to modulate inflammatory parameters such as paw edema, leukocyte migration, oxidative stress and proinflammatory cytokines. Thus, the lectin from the seaweed Amansia multifida has evident anti-inflammatory properties because it acts by reducing the formation of edema by modulating the effect of vascular mediators, migration of neutrophils, proinflammatory cytokines and oxidative stress control.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Lectinas/química , Lectinas/farmacologia , Rodófitas/química , Animais , Carragenina/farmacologia , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/química , Mediadores da Inflamação/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peritonite/tratamento farmacológico , Peritonite/metabolismo , Peroxidase/metabolismo
2.
Int J Biol Macromol ; 161: 1061-1069, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531369

RESUMO

Polysaccharide from marine alga Gracilaria caudata has potential health benefits, such as anti-inflammatory, gastroprotective and antidiarrheal effects. Here, we investigated the effect of a sulfated polysaccharide from G. caudata (SP-GC) on hypernociception and inflammatory response in arthritis models. The animals received SP-GC (3, 10 or 30 mg/kg) 1 h before tibio-tarsal injection of zymosan. Hypernociception, histopathology, edema, vascular permeability, myeloperoxidase (MPO) activity, cell influx, interleukin (IL)-1ß and nitric oxide (NO) levels were evaluated in acute phase. In another protocol, animals received SP-GC (30 mg/kg) 2 h post-complete Freund's adjuvant (CFA). Hypernociception, edema and arthritis index were determined in acute, sub-chronic and chronic phases. Rota-rod test measured the motor performance. SP-GC significantly reduced, in a dose-dependent manner, the zymosan-induced hypernociception with maximal effect at 30 mg/kg. The microscopic inflammation, joint edema, MPO activity, cell influx, IL-1ß and NO levels were also reduced by SP-GC. In the CFA-induced arthritis, SP-GC inhibits the hypernociception, edema and arthritic index in acute, sub-chronic and chronic phases. SP-GC did not alter the motor performance of animals. In conclusion, SP-GC exerts protective effect in models of arthritis due to the modulation of cell influx, IL-1ß and NO levels, culminating in the reduction of hypernociception and edema.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Gracilaria/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos/química , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/etiologia , Artrite Experimental/patologia , Biomarcadores , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/etiologia , Adjuvante de Freund , Imuno-Histoquímica , Masculino , Camundongos , Roedores , Zimosan/efeitos adversos
3.
Int J Biol Macromol ; 159: 415-421, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387607

RESUMO

A sulfated polysaccharide from the red algae Gelidiella acerosa (GaSP) was obtained through enzymatic extraction and subjected to chemical characterization by HPSEC, elemental microanalysis, FT-IR and NMR spectroscopies. The GaSP anticoagulant activity was investigated through APTT and PT tests and platelet aggregation assessed by turbidimetry. The antithrombotic and hemorrhagic activities were evaluated by venous thrombosis and hemorrhagic tendency models, respectively. FT-IR and NMR demonstrated that GaSP is a sulfated agaran. HPSEC and elemental microanalysis revealed a peak molar mass of 284.8 kDa and a degree of sulfation of 0.63, respectively. This molecule prolonged the coagulation time in 2.1 times and inhibited the platelet aggregation by 45%. Furthermore, it showed significant dose-dependent antithrombotic effect of 40%, 64% and 80% at 0.1, 0.5 and 1 mg/kg, respectively, without hemorrhage. These results suggest that GaSP has promising antithrombotic.


Assuntos
Polissacarídeos/química , Polissacarídeos/farmacologia , Rodófitas/química , Sulfatos/química , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Testes de Coagulação Sanguínea , Feminino , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peso Molecular , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Trombose Venosa/tratamento farmacológico , Trombose Venosa/etiologia
4.
Int J Biol Macromol ; 150: 354-361, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057860

RESUMO

This study aimed to evaluate the in vitro protective effect of topical treatment with a native sulfated polysaccharide of G. caudata (SP-Gc), hydrolyzed (H-SP-Gc), or desulfated (D-SP-Gc) polysaccharide of Gracilaria caudata in esophageal biopsies obtained from GERD patients. Biopsies were obtained from nonerosive reflux disease (NERD) patients and from erosive esophagitis patients. Then, the biopsies were mounted in an Ussing chamber to measure the basal transepithelial electrical resistance (TEER). The effect of mucosal exposure to an acid solution on TEER was analyzed with or without different concentrations (1, 0.3 or 1%) of SP-Gc, H-SP-Gc, or D-SP-Gc, precoated on the mucosa. Basal esophageal mucosal electrical resistance was significantly lower in erosive esophagitis than from NERD. Mucosal samples precoated with native SP-Gc (1%) significantly prevented TEER drop induced by an acidic solution in NERD, but this effect was not observed in erosive esophagitis. Topical application of D-SP-Gc showed no difference compared to native SP-Gc. However, when treated with chemically-modified SP-Gc, the protective effect observed with native SP-Gc was lost. The present study indicated that SP-Gc protects the human esophageal mucosal barrier in NERD patients. This effect is dependent on the structure but is independent of the presence of sulfate.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Gracilaria/química , Mucosa/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Adulto , Idoso , Biópsia , Esôfago , Feminino , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/etiologia , Refluxo Gastroesofágico/metabolismo , Refluxo Gastroesofágico/patologia , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade , Análise Espectral , Adulto Jovem
5.
J Ethnopharmacol ; 248: 112303, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31614204

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: There are many reports of pharmacological activities of extracts and fractions of different vegetable-derived products in the scientific literature and in folk medicine. Ethnopharmacological use of these products by various communities continues to be extensively explored, and they account for more than half of all medications used worldwide. Polysaccharides (PLS) extracted from plants such as Morinda Citrifolia Linn present therapeutic potential in treatment of inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). AIM OF THE STUDY: To evaluate the anti-inflammatory action of Noni-PLS against the intestinal damage in UC induced by acetic acid in mice. MATERIALS AND METHODS: In acetic acid-induced colitis, the mice were treated intraperitoneally (ip) with Noni-PLS (0.1, 0.3, and 3.0 mg/kg) or subcutaneously (sc) with dexamethasone (2.0 mg/kg) 30 min before euthanasia to determine the best dose of Noni-PLS with an anti-inflammatory effect in the course of UC. The colonic tissue samples were collected for macroscopic, wet weight, microscopic and biochemical (myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA), nitrate/nitrite (NO3/NO2), cytokines, cyclooxygenase (COX-2) and inducible nitric oxide (iNOS)) analyses. RESULTS: Treatment with Noni-PLS reduced the intestinal damage induced by acetic acid as it reduced macroscopic and microscopic scores and the wet weight of the colon. In addition, MPO activity and levels of GSH, MDA, NO3/NO2, pro-inflammatory cytokines, and COX-2 expression reduced. CONCLUSIONS: This study suggests that Noni-PLS exhibits anti-inflammatory action against intestinal damage by reducing inflammatory cell infiltration, oxidative stress, pro-inflammatory action of cytokines, COX-2 and iNOS expression in the inflamed colon. Noni-PLS shows therapeutic potential against inflammatory disorders like UC.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Morinda , Polissacarídeos/uso terapêutico , Ácido Acético , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Frutas , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Peroxidase/metabolismo , Polissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Biol Macromol ; 132: 1-8, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926484

RESUMO

Sulfated polysaccharides (PLS) extracted from the marine algae of the genus Gracilaria showed biological activity in different inflammatory models, except for periodontitis. Thus, this study aimed to evaluate the effectiveness of the treatment with PLS from Gracilaria caudata in ligature-induced periodontitis. 40 animals distributed into 5 groups were used (the control group (unligated), the ligated untreated group, and the ligated groups treated with 2.5, 5.0 and 10.0 mg/kg of PLS with intraperitoneal injection, respectively). After 20 days of treatment, the animals were killed and the following parameters were evaluated: Gingival Bleeding Index (GBI), Probing Pocket Depth (PPD), Myeloperoxidase (MPO) activity, Alveolar Bone Loss (ABL) for periodontal tissues; histopathological examination of gingival and liver tissues (Steatosis score); glutathione and malondialdehyde concentrations in the liver, serum levels of alanine aminotransferase and aspartate aminotransferase. The data revealed that treatment with 2.5 mg/kg of PLS showed the best anti-inflammatory effects with reduction of GBI, PPD and MPO activity, as well as oxidative stress and steatosis in liver. Our results indicated that the adjunct treatment with PLS from Gracilaria caudata could prevent the periodontal and hepatic tissue alteration caused by periodontitis.


Assuntos
Gracilaria/química , Periodontite/patologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos/química , Animais , Biomarcadores/metabolismo , Citoproteção/efeitos dos fármacos , Feminino , Ligadura/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Malondialdeído/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Periodontite/etiologia , Periodontite/metabolismo , Ratos , Ratos Wistar
7.
Carbohydr Polym ; 197: 515-523, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007642

RESUMO

Polysaccharides extracted from plants are very promising molecules in the field of pharmacotherapy. Knowing this, the aim of this study was to extract, characterize and evaluate the action of the polysaccharide of Morinda citrifolia Linn (Noni-PLS) in biological models of inflammatory processes. The characterization tests shown that sample refers to a heteropolysaccharide composed mainly of homogalacturonan and rhamnogalacturonan. This polysaccharide at dose of 10 mg/kg, when tested in our models of inflammation, showed significant activity in reducing carrageenan-induced paw oedema as well as all mediators edemas. This polysaccharide was able to inhibit the migration of leukocytes to the site of inflammation, and still reduced inflammatory nociception tests. This results, allows us to conclude that the polysaccharide extracted from Morinda citrifolia linn has anti-inflammatory potential since it reversed inflammatory parameters such as edema, leukocyte migration and nociception.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Edema/tratamento farmacológico , Morinda/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Carragenina , Edema/induzido quimicamente , Edema/patologia , Masculino , Camundongos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
8.
J Ethnopharmacol ; 224: 27-35, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29803569

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of marine seaweeds as a source of natural compounds with medicinal purposes is increasing in Western countries in the last decades, becoming an important alternative in the traditional medicine of many developing countries, where diarrhea still remains a severe public health problem, with high rates of mortality and morbidity. Sulfated polysaccharides (PLS) extracted from red seaweeds can exhibit therapeutic effects for the treatment of gastrointestinal disorders. Thus, the pharmacological properties of the PLS from Gracilaria cervicornis, an endemic seaweed found in the Brazilian northeast coast, was evaluated as an alternative natural medication for diarrhea. AIM OF THE STUDY: This study aimed to evaluate the antidiarrheal activity of sulfated polysaccharides (PLS) extracted from the red seaweed G. cervicornis in Swiss mice pre-treated with castor oil or cholera toxin. MATERIALS AND METHODS: The seaweed Gracilaria cervicornis was collected at Flecheiras beach (city of Trairí, State of Ceará, Brazil) and the PLS was obtained through enzymatic extraction and administered in mice (25-30 g) before diarrhea induction with castor oil or cholera toxin. For the evaluation of the total number of fecal output and diarrheal feces, the animals were placed in cages lined with adsorbent material. The evaluation of intestinal fluid accumulation (enteropooling) on castor oil-induced diarrhea in mice occurred by dissecting the small intestine and measuring its volume. The determination of Na+/K+-ATPase activity was measured in the small intestine supernatants by colorimetry, using commercial biochemistry kits. The gastrointestinal motility was evaluated utilizing an activated charcoal as a food tracer. The intestinal fluid secretion and chloride ion concentration were evaluated in intestinal closed loops in mice with cholera toxin-induced secretory diarrhea. The binding ability of PLS with GM1 and/or cholera toxin was evaluated by an Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: The G. cervicornis PLS showed antidiarrheal effects in both acute and secretory diarrhea, reducing the total number of fecal output, diarrheic stools, intestinal fluid accumulation, and increasing small intestine Na+/K+-ATPase activity on castor oil-induced diarrhea. However, the PLS did not affect gastrointestinal motility, indicating that this compound has a different action mechanism than loperamide. In secretory diarrhea, the PLS decreased intestinal fluid secretion and small intestine chloride excretion, binding with GM1 and/or cholera toxin and blocking their attachment to the enterocyte cell surface. CONCLUSIONS: In conclusion, PLS has a significant antidiarrheal effect in acute and secretory diarrhea. Further investigation is needed towards its use as a natural medicine to treat diarrhea.


Assuntos
Antidiarreicos/uso terapêutico , Diarreia/tratamento farmacológico , Gracilaria , Polissacarídeos/uso terapêutico , Animais , Antidiarreicos/farmacologia , Óleo de Rícino , Cloretos/metabolismo , Toxina da Cólera , Diarreia/induzido quimicamente , Diarreia/metabolismo , Diarreia/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Secreções Intestinais/metabolismo , Intestino Delgado/diagnóstico por imagem , Intestino Delgado/metabolismo , Camundongos , Polissacarídeos/farmacologia , Alga Marinha , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Int J Biol Macromol ; 112: 1122-1130, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29452186

RESUMO

Seaweeds are sources of biomolecules with biological activities and pharmacological potential - for example, lectins, a group of proteins that can bind reversibly to carbohydrates or compounds containing them. The aim of this study was to elucidate the structural properties of a lectin extracted from the red seaweed Bryothamnion triquetrum (BtL) and to investigate its anti-inflammatory activity in mice. The lectin was purified by precipitation with ammonium sulfate and ion-exchange chromatography. Its secondary structure and tryptophan (Trp) microenvironment were analyzed by circular dichroism spectroscopy and steady-state fluorescence spectroscopy, respectively. The anti-inflammatory effect was evaluated by means of paw edema induced by carrageenan or dextran, myeloperoxidase activity in paw tissue, and by measurement of leukocyte and neutrophil migration and cytokine quantification in a peritonitis model. The secondary structure of BtL is mostly composed of ß-strands and unordered conformation, and it is quite resistant to extremes of pH and temperature, preserving the exposure of Trp residues under these conditions. In an assessment of biological activities, groups of mice were subjected to pretreatment with BtL before the inflammatory stimulus. BtL had anti-inflammatory effects in the models tested, and hence may be considered a molecule with potential to be used in the pharmaceutical industry.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Lectinas/química , Lectinas/farmacologia , Rodófitas/química , Alga Marinha/química , Animais , Anti-Inflamatórios/uso terapêutico , Carragenina , Movimento Celular/efeitos dos fármacos , Dextranos , Edema/tratamento farmacológico , Edema/patologia , Feminino , Hemaglutinação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Interleucina-1beta/biossíntese , Lectinas/isolamento & purificação , Lectinas/uso terapêutico , Camundongos , Peritonite/tratamento farmacológico , Peritonite/patologia , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , Estrutura Secundária de Proteína , Coelhos , Espectrometria de Fluorescência , Temperatura , Fator de Necrose Tumoral alfa/biossíntese
10.
J Pharm Pharmacol ; 65(5): 724-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23600390

RESUMO

OBJECTIVES: The aim of this study was to evaluate the anti-inflammatory effect of a sulphated polysaccharide fraction (PLS) extracted from the alga Hypnea musciformis and investigate the possible involvement of the nitric oxide (NO) pathway in this effect. METHODS: The anti-inflammatory activity of PLS was evaluated using inflammatory agents (carrageenan and dextran) to induce paw oedema and peritonitis in Swiss mice. Samples of paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity, NO3 /NO2 levels, and interleukin-1ß (IL-1ß) level. The involvement of NO in the modulation of neutrophil migration in carrageenan-induced paw oedema or peritonitis was also investigated. KEY FINDINGS: Compared with vehicle-treated mice, mice pretreated with PLS (10 mg/kg) inhibited carrageenan-induced and dextran-induced oedema; it also inhibited total and differential peritoneal leucocyte counts in a model of peritonitis. These PLS effects were reversed by l-arginine treatment and recovered with the administration of a NO synthase blocker (aminoguanidine). Furthermore, PLS reduced the MPO activity, decreased IL-1ß levels, and increased NO3 /NO2 levels in the peritoneal cavity. CONCLUSIONS: PLS reduced the inflammatory response by modulating neutrophil migration, which appeared to be dependent on the NO pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças do Sistema Imunitário/prevenção & controle , Inflamação/tratamento farmacológico , Transtornos Leucocíticos/prevenção & controle , Óxido Nítrico/metabolismo , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Rodófitas/química , Animais , Anti-Inflamatórios/farmacologia , Arginina/farmacologia , Carragenina , Dextranos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Doenças do Sistema Imunitário/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Contagem de Leucócitos , Transtornos Leucocíticos/metabolismo , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Óxidos de Nitrogênio/metabolismo , Peritônio/efeitos dos fármacos , Peritônio/imunologia , Peritônio/metabolismo , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/imunologia , Peritonite/metabolismo , Peroxidase/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Transdução de Sinais , Compostos de Enxofre/farmacologia , Compostos de Enxofre/uso terapêutico
11.
Immunopharmacol Immunotoxicol ; 35(1): 93-100, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22830978

RESUMO

Many algal species contain relatively high concentrations of polysaccharide substances, a number of which have been shown to have anti-inflammatory and/or immunomodulatory activity. In this study, we evaluated the anti-inflammatory and antinociceptive effects in mice of a sulfated polysaccharide fraction (PLS) extracted from the algae Gracilaria caudata. The antiinflammatory activity of PLS was evaluated using several inflammatory agents (carrageenan, dextran, bradykinin, and histamine) to induce paw edema and peritonitis in Swiss mice. Samples of the paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity or TNF-α and IL-1ß levels, respectively. Mechanical hypernociception was induced by subcutaneous injection of carrageenan into the plantar surface of the paw. Pretreatment of mice by intraperitoneal administration of PLS (2.5, 5, and 10 mg/kg) significantly and dose-dependently reduced carrageenan-induced paw edema (p < 0.05) compared to vehicle-treated mice. Similarly, PLS 10 mg/kg effectively inhibited edema induced by dextran and histamine; however, edema induced by bradykinin was unaffected by PLS. PLS 10 mg/kg inhibited total and differential peritoneal leukocyte counts following carrageenan-induced peritonitis. Furthermore, PLS reduced carrageenan-increased MPO activity in paws and reduced cytokine levels in the peritoneal cavity. Finally PLS pretreatment also reduced hypernociception 3-4 h after carrageenan. We conclude that PLS reduces the inflammatory response and hypernociception in mice by reducing neutrophil migration and cytokines concentration.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Gracilaria/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Rodófitas/química , Animais , Carragenina/efeitos adversos , Edema/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Contagem de Leucócitos/métodos , Masculino , Camundongos , Peritonite/induzido quimicamente , Peroxidase/metabolismo , Extratos Vegetais/química , Polissacarídeos/química , Sulfatos/química , Sulfatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Mar Drugs ; 9(11): 2188-2200, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163181

RESUMO

The aim of the present study was to investigate the gastroprotective activity of a sulfated-polysaccharide (PLS) fraction extracted from the marine red algae Gracilaria caudata and the mechanism underlying the gastroprotective activity. Male Swiss mice were treated with PLS (3, 10, 30 and 90 mg·kg(-1), p.o.), and after 30 min, they were administered 50% ethanol (0.5 mL/25 g(-1), p.o.). One hour later, gastric damage was measured using a planimeter. Samples of the stomach tissue were also obtained for histopathological assessment and for assays of glutathione (GSH) and malondialdehyde (MDA). Other groups were pretreated with l-NAME (10 mg·kg(-1), i.p.), dl-propargylglycine (PAG, 50 mg·kg(-1), p.o.) or glibenclamide (5 mg·kg(-1), i.p.). After 1 h, PLS (30 mg·kg(-1), p.o.) was administered. After 30 min, ethanol 50% was administered (0.5 mL/25 g(-1), p.o.), followed by sacrifice after 60 min. PLS prevented-ethanol-induced macroscopic and microscopic gastric injury in a dose-dependent manner. However, treatment with l-NAME or glibenclamide reversed this gastroprotective effect. Administration of propargylglycine did not influence the effect of PLS. Our results suggest that PLS has a protective effect against ethanol-induced gastric damage in mice via activation of the NO/K(ATP) pathway.


Assuntos
Etanol/toxicidade , Gracilaria/química , Polissacarídeos/farmacologia , Gastropatias/prevenção & controle , Alcinos/farmacologia , Animais , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glibureto/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Canais KATP/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Gastropatias/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...