Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893982

RESUMO

Limnoperna fortunei, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control L. fortunei infestations in hydraulic systems. Thus, we proposed to investigate the effects of different periods (24, 48 and 72 h) of exposure to MXD-100™ (0.56 mg L-1) and NaDCC (1.5 mg L-1) on the gills of L. fortunei through morphological and molecular analyses. NaDCC promoted progressive morphological changes during the analyzed periods and only an upregulation of SOD and HSP70 expression during the first 24 h of exposure. MXD-100™ led to severe morphological changes from the first period of exposure, in addition to an upregulation of SOD, CAT, HSP70 and CYP expression during the first 24 h. In contrast, MXD-100™ led to a downregulation of CAT transcription between 24 and 48 h. In static conditions, NaDCC causes lethal damage after 72 h of exposure, and that exposure needs to be continuous to achieve the control of the species. Meanwhile, the MXD-100™ treatment presented several effects during the first 24 h, showing acute toxicity in a shorter period of time.

3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203662

RESUMO

Cancer is one of the deadliest diseases worldwide and has been responsible for millions of deaths. However, developing a satisfactory smart multifunctional material combining different strategies to kill cancer cells poses a challenge. This work aims at filling this gap by developing a composite material for cancer treatment through hyperthermia and drug release. With this purpose, magnetic nanoparticles were coated with a polymer matrix consisting of poly (L-co-D,L lactic acid-co-trimethylene carbonate) and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. High-resolution transmission electron microscopy and selected area electron diffraction confirmed magnetite to be the only iron oxide in the sample. Cytotoxicity and heat release assays on the hybrid nanoparticles were performed here for the first time. The heat induction results indicate that these new magnetic hybrid nanoparticles are capable of increasing the temperature by more than 5 °C, the minimal temperature rise required for being effectively used in hyperthermia treatments. The biocompatibility assays conducted under different concentrations, in the presence and in the absence of an external alternating current magnetic field, did not reveal any cytotoxicity. Therefore, the overall results indicate that the investigated hybrid nanoparticles have a great potential to be used as carrier systems for cancer treatment by hyperthermia.


Assuntos
Calefação , Hipertermia Induzida , Humanos , Hipertermia , Eletricidade
4.
Sci Rep ; 12(1): 13425, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927566

RESUMO

Although Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasma-optical emission spectroscopy. Brunauer-Emmett-Teller gas adsorption analysis showed a specific surface area of 121 m2 g-1. The formation of hydroxyapatite (HA) surface layer in vitro was confirmed by Fourier-transform infrared spectroscopy analysis before and after immersion in simulated body fluid (SBF) solution. The Rietveld refinement of the XRD patterns and selected area electron diffraction analyses confirmed HA in the sample even before immersing it in SBF solution. However, stronger evidences of the presence of HA were observed after immersion in SBF solution due to the surface mineralization. The BG-Carb samples showed no cytotoxicity on MC3T3-E1 cells and osteo-differentiation capacity similar to the positive control. Altogether, the BG-Carb material data reveals a promising plant waste-based candidate for hard and soft tissue engineering.


Assuntos
Materiais Biocompatíveis , Equisetum , Materiais Biocompatíveis/química , Durapatita/química , Vidro/química , Microscopia Eletrônica de Varredura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Difração de Raios X
5.
BMC Zool ; 7(1): 6, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37170369

RESUMO

BACKGROUND: Limnoperna fortunei is a freshwater bivalve mollusc originally from southern Asia that invaded South America in the 1990's. Due to its highly efficient water pumping and filtering, and its capacity to form strong adhesions to a variety of substrates by byssus thread, this invasive species has been able to adapt to several environments across South America, causing significant ecological and economic damages. By gaining a deeper understanding of the biological and ecological aspects of L. fortunei we will be able to establish more effective strategies to manage its invasion. The gills of the mollusc are key structures responsible for several biological functions, including respiration and feeding. In this work, we characterized the ultrastructure of L. fortunei gills and its ciliary epithelium using light microscopy, transmission and scanning electron microscopies. This is the first report of the morphology of the epithelial cells and cilia of the gill of L. fortunei visualized in high resolution. RESULTS: The analysis showed highly organized and abundant ciliary structures (lateral cilia, laterofrontal cirri and frontal cilia) on the entire length of the branchial epithelium. Mitochondria, smooth endoplasmic reticulum and glycogen granules were abundantly found in the epithelial cells of the gills, demonstrating the energy-demanding function of these structures. Neutral mucopolysaccharides (low viscosity mucus) were observed on the frontal surface of the gill filaments and acid mucopolysaccharides (high viscosity mucus) were observed to be spread out, mainly on the lateral tract. Spherical vesicles, possibly containing mucus, could also be observed in these cells. These findings demonstrate the importance of the mucociliary processes in particle capture and selection. CONCLUSIONS: Our data suggest that the mechanism used by this mollusc for particle capture and selection could contribute to a better understanding of key aspects of invasion and also in the establishment of more efficient and economically viable strategies of population control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...