Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 690: 511-521, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301492

RESUMO

This study aimed to determine uranium (U) pollution over time using otoliths as a marker of fish U contamination. Experiments were performed in field contamination (~20 µg L-1: encaged fish: 15d, 50d and collected wild fish) and in laboratory exposure conditions (20 and 250 µg L-1, 20d). We reported the U seasonal concentrations in field waterborne exposed roach fish (Rutilus rutilus), in organs and otoliths. Otoliths were analyzed by ICPMS and LA-ICP SF MS of the entire growth zone. Concentrations were measured on transects from nucleus to the edge of otoliths to characterize environmental variations of metal accumulation. Results showed a spatial and temporal variation of U contamination in water (from 51 to 9.4 µg L-1 at the surface of the water column), a high and seasonal accumulation in fish organs, mainly the digestive tract (from 1000 to 30,000 ng g-1, fw), the gills (from 1600 to 3200 ng g-1, fw) and the muscle (from 144 to 1054 ng g-1, fw). U was detected throughout the otolith and accumulation varied over the season from 70 to 350 ng g-1, close to the values measured (310 ng g-1) after high exposure levels in laboratory conditions. U in otoliths of encaged fish showed rapid and high U accumulation from 20 to 150 ng g-1. The U accumulation signal was mainly detected on the edge of the otolith, showing two U accumulation peaks, probably correlated to fish age, i.e. 2 years old. Surprisingly, elemental U and Zn signatures followed the same pattern therefore using the same uptake pathways. Laboratory, caging and field experiments indicated that otoliths were able to quickly accumulate U on the surface even for low levels and to store high levels of U. This study is an encouraging first step in using otoliths as a marker of U exposure.


Assuntos
Monitoramento Ambiental/métodos , Membrana dos Otólitos/química , Urânio/análise , Poluentes Químicos da Água/análise , Animais , Biomarcadores/metabolismo , Peixes/metabolismo
2.
Metallomics ; 9(5): 525-534, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28317950

RESUMO

Ecotoxicological studies have indicated the reprotoxicity of uranium (U) in zebrafish, but its molecular mechanisms remain unclear. Due to the non-covalent nature of U-protein complexes, canonical proteomics approaches are often not relevant as they usually use denaturating reagents or solvents. In this study, non-denaturating (ND) methods were used to obtain insight into the nature of U potential targets in ovaries of reproduced and non-reproduced zebrafish after 20 days of exposure to an environmentally relevant U concentration (20 µg L-1). After the ND sample preparation, 1-dimensional (SEC) and 2-dimensional (OGE × SEC) separations followed by ICP-sector-field MS measurements (U, P, Fe, Cu, and Zn) enabled the determination of chemical characteristics (MW, pI) of the metal-protein complexes. Phosphorus and U coelution confirmed the affinity of U for P-containing proteins. In addition, 2D separation allowed the discrimination of Fe-metalloproteins as potential U targets. Finally, 20 protein candidates for U complexation were identified after tryptic digestion conditions by LC-ESI FT MS and a database search. Potential U targets were mainly involved in three biological processes: oxidative stress regulation (SOD, GST), cytoskeleton structure (actin) and embryo early development (vtg, initiation factor).


Assuntos
Proteínas de Peixes/análise , Metaloproteínas/análise , Ovário/metabolismo , Urânio/análise , Poluentes Químicos da Água/análise , Animais , Cromatografia em Gel , Feminino , Proteínas de Peixes/metabolismo , Metaloproteínas/metabolismo , Modelos Moleculares , Ovário/efeitos dos fármacos , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Urânio/metabolismo , Urânio/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
3.
Free Radic Biol Med ; 99: 364-373, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521457

RESUMO

Oxidative stress has been extensively studied due to its correlation with cellular disorders and aging. In proteins, one biomarker of oxidative stress is the presence of carbonyl groups, such as aldehyde and ketone, in specific amino acid side chains such as lysine, proline, arginine and threonine, so-called protein carbonylation (PC). PC study is now a growing field in general and medical science since PC accumulation is associated with various pathologies and disorders. At present, enzyme-linked immunosorbent assays (ELISA) seem to be the most robust method of quantifying the presence of carbonyl groups in proteins, despite having some recognised caveats. In parallel, gel-based approaches present cross-comparison difficulties, along with other technical problems. As generic PC analyses still suffer from poor homogeneity, leading to cross-data analysis difficulties and poor results overlap, the need for harmonisation in the field of carbonyl detection is now widely accepted. This study aims to highlight some of the technical challenges in proteomic gel-based multiplexing experiments when dealing with PC in difficult samples like those from Caenorhabditis elegans, from protein extraction to carbonyl detection. We demonstrate that some critical technical parameters, such as labelling time, probe concentration, and total and carbonylated protein recovery rates, should be re-addressed in a sample-specific way. We also defined a procedure to cost-effectively adapt CyDye™-hydrazide-based protocols to specific samples, especially when the experimental interest is focused on studying differences between stimulating conditions with a maximised signal-to-noise ratio. Moreover, we have improved an already-existing powerful solubilisation buffer, making it potentially useful for hard-to-solubilise protein pellets. Lastly, the depicted methodology exemplifies a simple way of normalising carbonyl-related signal to total protein in SDS-PAGE multiplexing experiments. Within that scope, we also proposed a simple way to quantify carbonyl groups by on-gel spotting diluted dye-containing labelling buffer. Proof of the robustness of the procedure was also highlighted by the high linear correlation between the level of carbonyls and the ultraviolet exposure duration of whole worms (R2=0.993). Altogether, these results will help to standardise existing protocols in the growing field of proteomic carbonylation studies.


Assuntos
Envelhecimento/metabolismo , Benchmarking , Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Carbonilação Proteica , Proteômica/normas , Envelhecimento/genética , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Eletroforese em Gel de Poliacrilamida/normas , Ensaio de Imunoadsorção Enzimática , Humanos , Indicadores e Reagentes/química , Estresse Oxidativo , Proteômica/métodos , Razão Sinal-Ruído , Coloração e Rotulagem/métodos , Coloração e Rotulagem/normas
4.
Toxicol Lett ; 257: 44-59, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27267564

RESUMO

The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40mg/L, corresponding to 1mg of uranium per animal per day) of either 4% (235)U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (p<0.05). Using both inferential and non-supervised multivariate statistics, we show sets of spots features that lead to a clear discrimination between controls and EU exposed groups on the one hand (21 spots), and between 4% EU and 12% EU on the other hand (7 spots), showing that investigation of the serum proteome may possibly be of relevance to address both uranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteoma , Lesões por Radiação/sangue , Urânio/toxicidade , Nitrato de Uranil/toxicidade , Poluentes Radioativos da Água/toxicidade , Proteínas de Fase Aguda/metabolismo , Animais , Biomarcadores/sangue , Análise Discriminante , Ingestão de Líquidos , Mediadores da Inflamação/sangue , Masculino , Análise Multivariada , Estresse Oxidativo/efeitos da radiação , Análise de Componente Principal , Mapas de Interação de Proteínas , Proteômica/métodos , Lesões por Radiação/diagnóstico , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
5.
Chemosphere ; 91(4): 481-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23332674

RESUMO

Knowledge of the organ and subcellular distribution of metals in organisms is fundamental for the understanding of their uptake, storage, elimination and toxicity. Detoxification via MTLP and MRG formation and chelation by some proteins are necessary to better assess the metal toxic fraction in aquatic organisms. This work focused on uranium, natural element mainly used in nuclear industry, and its subcellular fractionation and chemical speciation to elucidate its accumulation pattern in gills and hepatopancreas of crayfish Procambarus clarkii, key organs of uptake and detoxification, respectively. Crayfish waterborne exposure was performed during 4 and 10d at 0, 30, 600 and 4000 µg UL(-1). After tissue dissection, uranium subcellular fractionation was performed by successive ultracentrifugations. SEC-ICP MS was used to study uranium speciation in cytosolic fraction. The uranium subcellular partitioning patterns varied according to the target organ studied and its biological function in the organism. The cytosolic fraction accounted for 13-30% of the total uranium amount in gills and 35-75% in hepatopancreas. The uranium fraction coeluting with MTLPs in gills and hepatopancreas cytosols showed that roughly 55% of uranium remained non-detoxified and thus potentially toxic in the cytosol. Furthermore, the sum of uranium amount in organelle fractions and in the non-detoxified part of cytosol, possibly equivalent to available fraction, accounted for 20% (gills) and 57% (hepatopancreas) of the total uranium. Finally, the SEC-ICP MS analysis provided information on potential competition of U for biomolecules similar than the ones involved in endogenous essential metal (Fe, Cu) chelation.


Assuntos
Astacoidea/metabolismo , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Animais
6.
Toxicol Lett ; 192(3): 337-48, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19914362

RESUMO

Uranium is an alpha-particle-emitting heavy metal. Its genotoxicity results from both its chemical and its radiological properties that vary with its isotopic composition (12% enriched uranium in (235)U (EU) has a specific activity 20 times higher than 0.3% depleted uranium in (235)U (DU)). The influence of the isotopic composition of uranium on its genotoxic profile (clastogenic/aneugenic) has never been described. The present study evaluated genotoxic profile of uranium with the cytokinesis-block micronucleus centromere assay. C3H10T1/2 mouse embryo fibroblasts were contaminated with either DU or EU at different concentrations (5 microM, 50 microM and 500 microM). Cells received low doses ranging from 0.3 microGy to 760.5 microGy. The frequency of binucleated cells with one micronucleus increased with increasing concentrations of both DU and EU in the same way. EU induced more centromere-negative micronuclei and nucleoplasmic bridges than DU. A correlation between these two clastogenic markers and ionizing radiation doses was observed. Finally, this study showed that the genotoxic profile of uranium depends on its isotopic composition. DU and EU are low and high clastogens, respectively. However, DU aneugenic effects remain high. Thus, there is a need to study the potential role of aneugenic effects of DU in carcinogenic risk assessment linked to uranium internal exposure.


Assuntos
Mutagênicos/toxicidade , Urânio/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Células Cultivadas , Testes Imunológicos de Citotoxicidade , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C3H , Testes para Micronúcleos , Método de Monte Carlo
7.
Radiat Prot Dosimetry ; 127(1-4): 125-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17553861

RESUMO

The aim of this work is to assess in vivo in a hairless rat model, the percutaneous diffusion of uranium through intact or wounded rat skin. Six types of wounds were simulated by excoriation and burns with 10 N HF, 2, 5 and 14 N HNO3 and 10 N NaOH on anaesthetised hairless rats. Percutaneous penetration through wounded skin towards blood and subsequent urinary excretion of uranium was followed in vivo during 24 h. The influence of the physicochemical form (solution or powder) of uranyl nitrate (UN) on its percutaneous diffusion was also investigated. UN, even as a powder, can diffuse through intact skin. The presence of uranium in blood is more persistent and its urinary elimination is slower after an HF burn than after an HNO3 burn. Excoriation increases dramatically percutaneous absorption of UN. Thus, percutaneous diffusion of UN is largely dependent on skin barrier integrity with a particular importance of stratum corneum.


Assuntos
Corpos Estranhos/metabolismo , Radiometria/métodos , Absorção Cutânea , Urânio/farmacocinética , Ferimentos Penetrantes/metabolismo , Animais , Carga Corporal (Radioterapia) , Simulação por Computador , Corpos Estranhos/complicações , Corpos Estranhos/dietoterapia , Cinética , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Ratos , Ratos Pelados , Eficiência Biológica Relativa , Urânio/toxicidade , Ferimentos Penetrantes/tratamento farmacológico , Ferimentos Penetrantes/etiologia
8.
Health Phys ; 92(5): 464-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17429305

RESUMO

Uranium uptake can occur accidentally by inhalation, ingestion, injection, or absorption through intact or wounded skin. Intact or wounded skin routes of absorption of uranium have received little attention. The aims of our work were (1) to evaluate the influence of the type of wound contamination on the short term distribution and excretion of uranium in rats and (2) to generate data to assess the time available to treat contamination of intact or wounded skin before significant uptake of uranium occurs. Biokinetic data presented in the present paper are based on an in vivo rat model. This study shows that a significant uptake of a uranyl nitrate solution through intact skin can occur within the first 6 h of exposure. Absorption of a uranyl nitrate solution through excoriated skin is significant after only 30 min of exposure. After a 24-h exposure, uranium uptake through intact skin and excoriated skin represents about 0.4% and 38% of the initial deposit of uranium, respectively. Contaminated serious chemical skin burns induced by HNO3 or NaOH are paradoxically less important in terms of uranium uptake risk because 99% of the incorporated uranium remains trapped at the wound site and its incorporation is delayed for at least 6 h after the beginning of contamination. These results confirm that the biokinetics of a given physicochemical form of uranium incorporated after wound contamination depend largely on the physiological evolution of the considered wound. Each type of wound, with its corresponding biokinetics of a uranium species, is a particular case.


Assuntos
Fezes/química , Pele/lesões , Pele/metabolismo , Urânio/farmacocinética , Urânio/urina , Ferimentos e Lesões/metabolismo , Animais , Masculino , Taxa de Depuração Metabólica , Exposição Ocupacional/análise , Especificidade de Órgãos , Ratos , Absorção Cutânea , Distribuição Tecidual
9.
Neurotoxicology ; 28(1): 108-13, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16965816

RESUMO

Several recent reports suggest that chronic exposure to uranium could induce behavioural effects in adult rats. As the immature brains are known to be more susceptible to toxic effects, rats were observed in an open field, in a Y-maze and in an elevated plus-maze at 2, 5 and 9 months old after exposure to enriched uranium (40 mg l-1) during gestation and lactation. The rats exposed to enriched uranium showed a significant decrease in alternation in the Y-maze at 2 months old which reflects a slight decrease in the spatial working memory capacities as previously described in adult rats. However, the main result was a delayed hyperactivity in the rats exposed to enriched uranium, which appeared to a slight extent at 5 months old and was more evident at 9 months old. Although this effect could not be directly explained by some uranium accumulation in the target organs, this experiment showed that early exposure to enriched uranium can induce a very late effect on the rat behaviour and that such studies should not be restricted to the effects observed on young rats.


Assuntos
Hipercinese/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal , Urânio/toxicidade , Animais , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Razão de Masculinidade , Urânio/metabolismo
10.
Toxicology ; 227(3): 227-39, 2006 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-16978755

RESUMO

The digestive tract is the entry route for radionuclides following the ingestion of contaminated food and/or water wells. It was recently characterized that the small intestine was the main area of uranium absorption throughout the gastrointestinal tract. This study was designed to determine the role played by the Peyer's patches in the intestinal absorption of uranium, as well as the possible accumulation of this radionuclide in lymphoid follicles and the toxicological or pathological consequences on the Peyer's patch function subsequent to the passage and/or accumulation of uranium. Results of experiments performed in Ussing chambers indicate that the apparent permeability to uranium in the intestine was higher (10-fold) in the mucosa than in Peyer's patches ((6.21+/-1.21 to 0.55+/-0.35)x10(-6)cm/s, respectively), demonstrating that the small intestinal epithelium was the preferential pathway for the transmucosal passage of uranium. A quantitative analysis of uranium by ICP-MS following chronic contamination with depleted uranium during 3 or 9 months showed a preferential accumulation of uranium in Peyer's patches (1355% and 1266%, respectively, at 3 and 9 months) as compared with epithelium (890% and 747%, respectively, at 3 and 9 months). Uranium was also detected in the mesenteric lymph nodes ( approximately 5-fold after contamination with DU). The biological effects of this accumulation of depleted uranium after chronic contamination were investigated in Peyer's patches. There was no induction of the apoptosis pathway after chronic DU contamination in Peyer's patches. The results indicate no change in the cytokine expression (Il-10, TGF-beta, IFN-gamma, TNF-alpha, MCP-1) in Peyer's patches and in mesenteric lymph nodes, and no modification in the uptake of yeast cells by Peyer's patches. In conclusion, this study shows that the Peyer's patches were a site of retention for uranium following the chronic ingestion of this radionuclide, without any biological consequences of such accumulation on Peyer's patch functions.


Assuntos
Íleo/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Nitrato de Uranil/farmacocinética , Animais , Apoptose/efeitos dos fármacos , Autorradiografia , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Expressão Gênica/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/imunologia , Íleo/patologia , Técnicas In Vitro , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Nitrato de Uranil/toxicidade
11.
Health Phys ; 90(2): 139-47, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16404171

RESUMO

Data describing the biokinetics of radionuclides after contamination come mainly from experimental acute exposures of laboratory animals and follow-up of incidental exposures of humans. These data were compiled to form reference models that could be used for dose calculation in humans. In case of protracted exposure, the same models are applied, assuming that they are not modified by the duration of exposure. This work aims at testing this hypothesis. It presents new experimental data on retention of uranium after chronic intake, which are compared to values calculated from a biokinetic model that is based on experiments of acute exposure of rats to uranium. Experiments were performed with 56 male Sprague Dawley rats, from which 35 were exposed during their whole adult life to 40 mg L of uranyl nitrate dissolved in mineral water and 21 were kept as controls. Animals were euthanatized at 32, 95, 186, 312, 368, and 570 d after the beginning of contamination. Urine and all tissues were removed, weighted, mineralized, and then analyzed for uranium content by Kinetics Phosphorescence Analysis (KPA) or by ICP-MS. Experimental data showed that uranium accumulated in most organs, following a nonmonotonous pattern. Peaks of activities were observed at 1-3, 10, and 19 mo after the beginning of exposure. Additionally, accumulation was shown to occur in tissues such as teeth and brain that are not usually described as target organs. Comparison with model prediction showed that the accumulation of uranium in target organs after chronic exposure is overestimated by the use of a model designed for acute exposure. These differences indicate that protracted exposure to uranium may induce changes in biokinetic parameters when compared to acute contamination and that calculation of dose resulting from chronic intake of radionuclides may need specific models that are not currently available.


Assuntos
Modelos Biológicos , Urânio/farmacocinética , Administração Oral , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Urânio/urina
12.
Chem Res Toxicol ; 18(7): 1150-4, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16022507

RESUMO

Studies of the chemical speciation of uranium in water can enhance the knowledge of the mechanisms of its absorption from the gastrointestinal tract and its storage in the body. They can also help to improve the dosimetric models recommended by the International Commission on Radiological Protection (ICRP). The aim of this work was to assess the influence of uranium speciation on its absorption from the gastrointestinal tract by using both computer speciation modeling and direct measurement of the fractional absorption in vivo in rats after ingestion of five different samples of contaminated water. Preliminary ex vivo studies with human saliva and gastric juice showed that 90% of uranium was recovered with the natural components of the fluid studied. The computer studies of uranium speciation among the electrolytes of these fluids showed that under the set conditions, the chemical species changed in a broadly similar manner under the influence of fluid composition and pH. In vivo studies in rats validated these observations by indicating an average fractional absorption of about 0.4% for each of five different water samples. It is concluded that the chemical form of uranium in the water ingested did not influence its absorption into the body.


Assuntos
Trato Gastrointestinal/metabolismo , Absorção Intestinal , Urânio/química , Urânio/farmacocinética , Água/química , Animais , Suco Gástrico/química , Suco Gástrico/metabolismo , Íons/química , Masculino , Ratos , Ratos Sprague-Dawley , Saliva/química , Saliva/metabolismo
13.
Radiat Prot Dosimetry ; 105(1-4): 179-84, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14535231

RESUMO

Speciation studies refer to the distribution of species in a particular sample or matrix. These studies are necessary to improve the description, understanding and prediction of trace element kinetics and toxicity. In the case of internal contamination with radionuclides, speciation studies could help to improve both the biokinetic and dosimetric models for radionuclides. There are different methods to approach the speciation of radionuclides in a biological system, depending on the degree of accuracy needed and the level of uncertainties accepted. Among them, computer modelling and experimental determination are complementary approaches. This paper describes what is known about speciation of actinides in blood, GI tract, liver and skeleton and of their consequences in terms of internal dosimetry. The conclusion is that such studies provide very valuable data and should be targeted in the future on some specific tissues and biomolecules.


Assuntos
Elementos da Série Actinoide/classificação , Elementos da Série Actinoide/farmacocinética , Osso e Ossos/metabolismo , Sistema Digestório/metabolismo , Fígado/metabolismo , Modelos Biológicos , Radiometria/métodos , Elementos da Série Actinoide/análise , Elementos da Série Actinoide/sangue , Animais , Carga Corporal (Radioterapia) , Simulação por Computador , Humanos , Especificidade de Órgãos , Doses de Radiação , Medição de Risco/métodos , Distribuição Tecidual
14.
Radiat Res ; 157(5): 589-95, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11966325

RESUMO

The aim of the present study was to measure the formation of eight base modifications in the DNA of cells exposed to either low-LET ((60)Co gamma rays) or high-LET ((12)C(6+) particles) radiation. For this purpose, a recently optimized HPLC-MS/MS method was used subsequent to DNA extraction and hydrolysis. The background level of the measured modified bases and nucleosides was shown to vary between 0.2 and 2 lesions/10(6) bases. Interestingly, thymidine glycols constitute the main radiation-induced base modifications, with an overall yield of 0.097 and 0.062 lesion/10(6) bases per gray for gamma rays and carbon heavy ions, respectively. Both types of radiations generate four other major degradation products, in the following order of decreasing importance: FapyGua > 5-HmdUrd > 5-FordUrd > 8-oxodGuo. The yields of formation of FapyAde and 8-oxoAde are one order of magnitude lower than those of the related guanine modifications, whereas the radiation-induced generation of 5-OHdUrd was below the limit of detection of the assay. The efficiency for both types of radiation to generate base damage in cellular DNA is low because the highest yield per gray was 0.097 thymine glycols per 10(6) DNA bases. As a striking observation, the yield of formation of the measured DNA lesions was found to be, on average, twofold lower after exposure to high-LET radiation ((12)C(6+)) than after exposure to low-LET gamma radiation. These studies show that the HPLC-MS/MS assay provides an accurate, reliable and sensitive method for measuring cellular DNA base damage.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Raios gama , Radioisótopos de Césio , Cromatografia Líquida de Alta Pressão , DNA/química , DNA de Neoplasias/química , DNA de Neoplasias/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Espectrometria de Massas , Timina/efeitos da radiação , Células Tumorais Cultivadas
15.
Chem Res Toxicol ; 13(10): 1002-10, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11080049

RESUMO

A method involving high-performance liquid chromatography (HPLC) separation associated with tandem mass spectrometry (MS/MS) detection in the multiple-reaction monitoring mode was set up for the assessment of radiation-induced degradation products of DNA bases. This sensitive and specific assay is aimed at assessing six oxidized 2'-deoxyribonucleosides and two modified purine bases within both isolated and cellular DNA. For this purpose, stable isotopically labeled internal standards were prepared and used for isotope dilution mass spectrometry measurements. The latter method was validated through a comparison with two other assays, including HPLC associated with electrochemical detection and gas chromatography coupled to mass spectrometry. Using the specific and sensitive HPLC-MS/MS approach, 5,6-dihydroxy-5,6-dihydrothymidine, 5-hydroxy-2'-deoxyuridine, 5-(hydroxymethyl)-2'-deoxyuridine, 5-formyl-2'-deoxyuridine, 8-oxo-7,8-dihydro-2'-deoxyadenosine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 4, 6-diamino-5-formamidopyrimidine, and 2, 6-diamino-4-hydroxy-5-formamidopyrimidine were quantified within both isolated and cellular DNA upon exposure to gamma-radiation.


Assuntos
DNA/efeitos da radiação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...