Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830168

RESUMO

Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.

2.
Probiotics Antimicrob Proteins ; 14(1): 204-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067836

RESUMO

In addition to be an important zoonotic agent, Streptococcus suis serotype 2 causes severe infections in pigs. In this study, we characterized a new bacteriocin produced by Streptococcus pluranimalium 2N12 isolated from a pig nasal sample. The bacteriocin, termed pluranimalicin 2N12, was a two-peptide class IIb bacteriocin active against S. suis. The gene cluster responsible for the biosynthesis of pluranimalicin 2N12 by S. pluranimalium contained seven open reading frames, including putative genes for peptides (pluα, pluß), export (pluA, pluB), and regulation (pluC, pluD, pluE). The deduced amino acid sequences of the peptides Pluα (33 amino acids) and Pluß (29 amino acids) showed 73% and 69% identity in amino acid residues, respectively, with the peptides SthA and SthB of the streptocin produced by Streptococcus gordonii. The antibacterial activity of pluranimalicin 2N12 against S. suis was dependent on the presence of the two peptides Pluα and Pluß that exhibited a membrane permeabilization effect. No activity was found against the other swine pathogens tested. Depending on the concentrations used, Pluα and Pluß displayed no or low toxicity towards swine tracheal epithelial cells. The pluranimalicin peptides Pluα and Pluß, either individually or in combination, exhibited anti-inflammatory activity since they attenuated IL-6 and TNF-α production by macrophages challenged with lipopolysaccharide. Given its dual action (antibacterial and anti-inflammatory), pluranimalicin 2N12 holds promise as a potential therapeutic agent for controlling S. suis infections.


Assuntos
Bacteriocinas , Cavidade Nasal , Streptococcus suis , Animais , Cavidade Nasal/microbiologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Streptococcus , Streptococcus suis/genética , Streptococcus suis/metabolismo , Suínos
3.
Front Vet Sci ; 8: 787241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957284

RESUMO

Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, a highly contagious and often deadly respiratory disease that causes major economic losses in the swine industry worldwide. The aim of the present study was to investigate the hydrogen peroxide (H2O2)-dependent antagonistic activity of Streptococcus pluranimalium 2N12 (pig nasal isolate) against A. pleuropneumoniae. A fluorimetric assay showed that S. pluranimalium produces H2O2 dose- and time-dependently. The production of H2O2 increased in the presence of exogenous lactate, suggesting the involvement of lactate oxidase. All 20 strains of A. pleuropneumoniae tested, belonging to 18 different serovars, were susceptible to H2O2, with minimal inhibitory concentrations and minimal bactericidal concentrations ranging from 0.57 to 2.3 mM. H2O2, as well as a culture supernatant of S. pluranimalium, killed planktonic cells of A. pleuropneumoniae. Treating the culture supernatant with catalase abolished its bactericidal property. H2O2 was also active against a pre-formed biofilm-like structure of A. pleuropneumoniae albeit to a lesser extent. A checkerboard assay was used to show that there were antibacterial synergistic interactions between H2O2 and conventional antibiotics, more particularly ceftiofur. Based on our results and within the limitations of this in vitro study, the production of H2O2 by S. pluranimalium could be regarded as a potential protective mechanism of the upper respiratory tract against H2O2-sensitive pathogens such as A. pleuropneumoniae.

4.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958402

RESUMO

The genome sequencing of Aeromonas salmonicida subspecies salmonicida strain 2004-072 revealed a plasmid bearing a region carrying antibiotic resistance genes very similar to the one found in the plasmid pRAS1, an IncU family plasmid. This new plasmid was named pRAS1b.

5.
Front Microbiol ; 11: 737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457706

RESUMO

The yeast Geotrichum candidum (teleomorph Galactomyces candidus) is inoculated onto mold- and smear-ripened cheeses and plays several roles during cheese ripening. Its ability to metabolize proteins, lipids, and organic acids enables its growth on the cheese surface and promotes the development of organoleptic properties. Recent multilocus sequence typing (MLST) and phylogenetic analyses of G. candidum isolates revealed substantial genetic diversity, which may explain its strain-dependant technological capabilities. Here, we aimed to shed light on the phenotypic and genetic diversity among eight G. candidum and three Galactomyces spp. strains of environmental and dairy origin. Phenotypic tests such as carbon assimilation profiles, the ability to grow at 35°C and morphological traits on agar plates allowed us to discriminate G. candidum from Galactomyces spp. The genomes of these isolates were sequenced and assembled; whole genome comparison clustered the G. candidum strains into three subgroups and provided a reliable reference for MLST scheme optimization. Using the whole genome sequence as a reference, we optimized an MLST scheme using six loci that were proposed in two previous MLST schemes. This new MLST scheme allowed us to identify 15 sequence types (STs) out of 41 strains and revealed three major complexes named GeoA, GeoB, and GeoC. The population structure of these 41 strains was evaluated with STRUCTURE and a NeighborNet analysis of the combined six loci, which revealed recombination events between and within the complexes. These results hint that the allele variation conferring the different STs arose from recombination events. Recombination occurred for the six housekeeping genes studied, but most likely occurred throughout the genome. These recombination events may have induced an adaptive divergence between the wild strains and the cheesemaking strains, as observed for other cheese ripening fungi. Further comparative genomic studies are needed to confirm this phenomenon in G. candidum. In conclusion, the draft assembly of 11 G. candidum/Galactomyces spp. genomes allowed us to optimize a genotyping MLST scheme and, combined with the assessment of their ability to grow under different conditions, provides a reliable tool to cluster and eventually improves the selection of G. candidum strains.

6.
Microorganisms ; 9(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396556

RESUMO

The type three secretion system (TTSS) locus of Aeromonas salmonicida subsp. salmonicida, located on the plasmid pAsa5, is known to be lost when the bacterium is grown at temperatures of 25 °C. The loss of the locus is due to the recombination of the insertion sequences flanking the TTSS region. However, the mechanism involved in this recombination is still elusive. Here, we analyzed 22 A. salmonicida subsp. salmonicida strains that had already lost their TTSS locus, and we systematically explored another 47 strains for their susceptibility to lose the same locus when grown at 25 °C. It appeared that strains from Europe were more prone to lose their TTSS locus compared to Canadian strains. More specifically, it was not possible to induce TTSS loss in Canadian strains that have AsaGEI2a, a genomic island, and prophage 3, or in Canadian strains without a genomic island. A comparative genomic approach revealed an almost perfect correlation between the presence of a cluster of genes, not yet characterized, and the susceptibility of various groups of strains to lose their locus. This cluster of genes encodes putative proteins with DNA binding capacity and phage proteins. This discovery creates new opportunities in the study of pAsa5 thermosensitivity.

7.
Sci Total Environ ; 690: 313-320, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299566

RESUMO

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid pAsa5-3432 carries a new multidrug region composed of multiple mobile genetic elements, including a Class 1 integron similar to an integrated element of Salmonella enterica. With this new region, probably acquired through plasmid recombination, pAsa5-3432 is the first reported plasmid of this bacterium that bears both an essential virulence factor (the type three secretion system) and multiple antibiotic resistance genes. As for pRAS3-3432, compared to the classic pRAS3, it carries a new mobile element that has only been identified in Chlamydia suis. Hence, with the identification of those two novel plasmids harboring mobile genetic elements that are normally encountered in other bacterial species, the present study puts emphasis on the important impact of mobile genetic elements in the genomic plasticity of A. salmonicida subsp. salmonicida and suggests that this aquatic bacterium could be an important reservoir of antibiotic resistance genes that can be exchanged with other bacteria, including human and animal pathogens.


Assuntos
Aeromonas salmonicida/genética , Resistência Microbiana a Medicamentos/genética , Animais , Genes Bacterianos , Genoma Bacteriano , Suínos , Fatores de Virulência/genética
8.
PLoS One ; 14(4): e0216002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31039174

RESUMO

The Gram-positive α-hemolytic Streptococcus suis is a major pathogen in the swine industry and an emerging zoonotic agent that can cause several systemic issues in both pigs and humans. A total of 35 S. suis serotypes (SS) have been identified and genotyped into > 700 sequence types (ST) by multilocus sequence typing (MLST). Eurasian ST1 isolates are the most virulent of all S. suis SS2 strains while North American ST25 and ST28 strains display moderate to low/no virulence phenotypes, respectively. Notably, S. suis 90-1330 is an avirulent Canadian SS2-ST28 isolate producing a lantibiotic bacteriocin with potential prophylactic applications. To investigate the suitability of this strain for such purposes, we sequenced its complete genome using the Illumina and PacBio platforms. The S. suis 90-1330 bacteriocin was found encoded in a locus cargoed in what appears to be an integrative and conjugative element (ICE). This bacteriocin locus was also found to be widely distributed across several streptococcal species and in a few Staphylococcus aureus strains. Because the locus also confers protection from the bacteriocin, the potential prophylactic benefits of using this strain may prove limited due to the spread of the resistance to its effects. Furthermore, the S. suis 90-1330 genome was found to code for genes involved in blood survival, suggesting that strain may not be a benign as previously thought.


Assuntos
Bacteriocinas/metabolismo , Streptococcus suis/isolamento & purificação , Streptococcus suis/metabolismo , Animais , Bacteriocinas/genética , Farmacorresistência Bacteriana , Loci Gênicos , Variação Genética , Genoma Bacteriano , Humanos , Viabilidade Microbiana , Prófagos/genética , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Suínos , Virulência
9.
BMC Genomics ; 18(1): 528, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701230

RESUMO

BACKGROUND: Aeromonas salmonicida subsp. salmonicida is a ubiquitous psychrophilic waterborne bacterium and a fish pathogen. The numerous mobile elements, especially insertion sequences (IS), in its genome promote rearrangements that impact its phenotype. One of the main virulence factors of this bacterium, its type three secretion system (TTSS), is affected by these rearrangements. In Aeromonas salmonicida subsp. salmonicida most of the TTSS genes are encoded in a single locus on a large plasmid called pAsa5, and may be lost when the bacterium is cultivated at a higher temperature (25 °C), producing non-virulent mutants. In a previous study, pAsa5-rearranged strains that lacked the TTSS locus on pAsa5 were produced using parental strains, including 01-B526. Some of the generated deletions were explained by homologous recombination between ISs found on pAsa5, whereas the others remained unresolved. To investigate those rearrangements, short- and long-read high-throughput sequencing technologies were used on the A. salmonicida subsp. salmonicida 01-B526 whole genome. RESULTS: Whole genome sequencing of the 01-B526 strain revealed that its pAsa5 has an additional IS copy, an ISAS5, compared to the reference strain (A449) sequence, which allowed for a previously unknown rearrangement to occur. It also appeared that 01-B526 bears a second large plasmid, named pAsa9, which shares 40 kbp of highly similar sequences with pAsa5. Following these discoveries, previously unexplained deletions were elucidated by genotyping. Furthermore, in one of the derived strains a fusion of pAsa5 and pAsa9, involving the newly discovered ISAS5 copy, was observed. CONCLUSION: The loss of TTSS and hence virulence is explained by one consistent mechanism: IS-driven homologous recombination. The similarities between pAsa9 and pAsa5 also provide another example of genetic diversity driven by ISs.


Assuntos
Aeromonas salmonicida/genética , Plasmídeos/genética , Sistemas de Secreção Tipo III/genética , Técnicas de Genotipagem , Especificidade da Espécie
10.
Genome Announc ; 5(24)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619805

RESUMO

Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K-/K+ strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae.

11.
Nat Protoc ; 12(3): 547-565, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28207002

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems have been adapted into a powerful genome-editing tool. The basis for the flexibility of the tool lies in the adaptive nature of CRISPR-Cas as a bacterial immune system. Here, we describe a protocol to experimentally demonstrate the adaptive nature of this bacterial immune system by challenging the model organism for the study of CRISPR adaptation, Streptococcus thermophilus, with phages in order to detect natural CRISPR immunization. A bacterial culture is challenged with lytic phages, the surviving cells are screened by PCR for expansion of their CRISPR array and the newly acquired specificities are mapped to the genome of the phage. Furthermore, we offer three variants of the assay to (i) promote adaptation by challenging the system using defective viruses, (ii) challenge the system using plasmids to generate plasmid-resistant strains and (iii) bias the system to obtain natural immunity against a specifically targeted DNA sequence. The core protocol and its variants serve as a means to explore CRISPR adaptation, discover new CRISPR-Cas systems and generate bacterial strains that are resistant to phages or refractory to undesired genes or plasmids. In addition, the core protocol has served in teaching laboratories at the undergraduate level, demonstrating both its robust nature and educational value. Carrying out the core protocol takes 4 h of hands-on time over 7 d. Unlike sequence-based methods for detecting natural CRISPR adaptation, this phage-challenge-based approach results in the isolation of CRISPR-immune bacteria for downstream characterization and use.


Assuntos
Adaptação Fisiológica , Pesquisa , Streptococcus thermophilus/genética , Streptococcus thermophilus/fisiologia , Ensino , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Streptococcus thermophilus/imunologia , Streptococcus thermophilus/virologia
13.
Front Genet ; 8: 211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326751

RESUMO

In Aeromonas salmonicida subsp. salmonicida, a bacterium that causes fish disease, there are two types of small plasmids (<15 kbp): plasmids without known function, called cryptic plasmids, and plasmids that bear beneficial genes for the bacterium. Four among them are frequently detected in strains of A. salmonicida subsp. salmonicida: pAsa1, pAsa2, pAsa3, and pAsal1. The latter harbors a gene which codes for an effector of the type three secretion system, while the three others are cryptic. It is currently unclear why these cryptic plasmids are so highly conserved throughout strains of A. salmonicida subsp. salmonicida. In this study, three small plasmids, named pAsa10, pAsaXI and pAsaXII, are described. Linked to tetracycline resistance, a partial Tn1721 occupies half of pAsa10. A whole Tn1721 is also present in pAsa8, another plasmid previously described in A. salmonicida subsp. salmonicida. The backbone of pAsa10 has no relation with other plasmids described in this bacterium. However, the pAsaXI and pAsaXII plasmids are derivatives of cryptic plasmids pAsa3 and pAsa2, respectively. pAsaXI is identical to pAsa3, but bears a transposon with a gene that encodes for a putative virulence factor. pAsaXII, also found in Aeromonas bivalvium, has a 95% nucleotide identity with the backbone of pAsa2. Like pAsa7, another pAsa2-like plasmid recently described, orf2 and orf3 are missing and are replaced in pAsaXII by genes that encode a formaldehyde detoxification system. These new observations suggest that transposons and particularly Tn1721 are frequent and diversified in A. salmonicida subsp. salmonicida. Moreover, the discovery of pAsaXI and pAsaXII expands the group of small plasmids that are derived from cryptic plasmids and have a function. Although their precise roles remain to be determined, the present study shows that cryptic plasmids could serve as moldable vectors to acquire mobile elements such as transposons. Consequently, they could act as key agents of the diversification of virulence and adaptive traits of Aeromonas salmonicida subsp. salmonicida.

14.
PeerJ ; 4: e2595, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812409

RESUMO

Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in salmonids, is an issue especially because many isolates of this bacterium display antibiotic resistances, which limit treatments against the disease. Recent results suggested the possible existence of alternative forms of pAsa4, a large plasmid found in A. salmonicida subsp. salmonicida and bearing multiple antibiotic resistance genes. The present study reveals the existence of two newly detected pAsa4 variants, pAsa4b and pAsa4c. We present the extensive characterization of the genomic architecture, the mobile genetic elements and the antimicrobial resistance genes of these plasmids in addition to the reference pAsa4 from the strain A449. The analysis showed differences between the three architectures with consequences on the content of resistance genes. The genomic plasticity of the three pAsa4 variants could be partially explained by the action of mobile genetic elements like insertion sequences. Eight additional isolates from Canada and Europe that bore similar antibiotic resistance patterns as pAsa4-bearing strains were genotyped and specific pAsa4 variants could be attributed to phenotypic profiles. pAsa4 and pAsa4c were found in Europe, while pAsa4b was found in Canada. In accordance with their content in conjugative transfer genes, only pAsa4b and pAsa4c can be transferred by conjugation in Escherichia coli. The plasticity of pAsa4 variants related to the acquisition of antibiotic resistance indicates that these plasmids may pose a threat in terms of the dissemination of antimicrobial-resistant A. salmonicida subsp. salmonicida bacteria.

15.
Microbiology (Reading) ; 162(6): 942-953, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27028891

RESUMO

Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.


Assuntos
Aeromonas salmonicida/genética , Proteínas de Bactérias/genética , Cloranfenicol O-Acetiltransferase/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/isolamento & purificação , Animais , Sequência de Bases , Cloranfenicol/farmacologia , Peixes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Filogenia , Replicon/genética , Análise de Sequência de DNA
16.
Biomed Res Int ; 2016: 6815894, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28078298

RESUMO

Recently, we reported the purification and characterization of three distinct lantibiotics (named suicin 90-1330, suicin 3908, and suicin 65) produced by Streptococcus suis. In this study, we investigated the distribution of the three suicin lantibiotic gene clusters among serotype 2 S. suis strains belonging to sequence type (ST) 25 and ST28, the two dominant STs identified in North America. The genomes of 102 strains were interrogated for the presence of suicin gene clusters encoding suicins 90-1330, 3908, and 65. The gene cluster encoding suicin 65 was the most prevalent and mainly found among ST25 strains. In contrast, none of the genes related to suicin 90-1330 production were identified in 51 ST25 strains nor in 35/51 ST28 strains. However, the complete suicin 90-1330 gene cluster was found in ten ST28 strains, although some genes in the cluster were truncated in three of these isolates. The vast majority (101/102) of S. suis strains did not possess any of the genes encoding suicin 3908. In conclusion, this study indicates heterogeneous distribution of suicin genes in S. suis.


Assuntos
Proteínas de Bactérias/genética , Bacteriocinas/genética , Infecções Estreptocócicas/genética , Streptococcus suis/genética , Animais , Bacteriocinas/biossíntese , Genoma Bacteriano , Família Multigênica , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Suínos
17.
PLoS One ; 10(12): e0145854, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26709705

RESUMO

Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90-1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89-1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA') of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84.6%), and Lactococcus lactis subsp. lactis (lacticin 481; 74.1%). Further studies will evaluate the ability of suicin 65 or the producing strain to prevent experimental S. suis infections in pigs.


Assuntos
Bacteriocinas/isolamento & purificação , Streptococcus suis/metabolismo , Sequência de Aminoácidos , Animais , Bacteriocinas/biossíntese , Bacteriocinas/genética , Sequência de Bases , DNA Bacteriano/genética , Genes Bacterianos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Homologia de Sequência de Aminoácidos , Sorogrupo , Streptococcus suis/genética , Streptococcus suis/patogenicidade , Suínos
18.
FEMS Microbiol Lett ; 362(13): fnv093, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048417

RESUMO

Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements.


Assuntos
Aeromonas salmonicida/genética , Aeromonas salmonicida/isolamento & purificação , Ilhas Genômicas , Truta/microbiologia , Aeromonas salmonicida/classificação , Aeromonas salmonicida/crescimento & desenvolvimento , Animais , Animais Selvagens/microbiologia , Elementos de DNA Transponíveis , Furunculose/microbiologia , Genoma Bacteriano/genética , Genótipo , Integrases/genética , Plasmídeos , Alinhamento de Sequência , Análise de Sequência de DNA , Suíça , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética
19.
FEMS Microbiol Lett ; 362(4)2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25724776

RESUMO

The bacterium Aeromonas salmonicida is the etiological agent of furunculosis, a widespread fish disease causing important economic losses to the fish farming industry. Antibiotic treatments in fish farms may be challenging given the existence of multidrug-resistant isolates of this bacterium. Here, we report the draft genome sequences of the 2004-05MF26 and 2009-144K3 isolates, which harbor plasmids conferring antibiotic resistance. Both isolates also carry the large plasmid pAsa5, which is known to encode a type three secretion system (TTSS) and the pAsal1 plasmid which has the aopP gene producing a TTSS effector. These two isolates are good representatives of the plasmid diversity in A. salmonicida subsp. salmonicida.


Assuntos
Aeromonas salmonicida/genética , Resistência Microbiana a Medicamentos/genética , Plasmídeos , Aeromonas salmonicida/isolamento & purificação , Animais , Sistemas de Secreção Bacterianos , Sequência de Bases , Doenças dos Peixes/microbiologia , Furunculose/microbiologia , Genoma Bacteriano , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
PLoS One ; 10(2): e0117245, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659110

RESUMO

While Streptococcus suis serotype 2 is known to cause severe infections in pigs, it can also be isolated from the tonsils of healthy animals that do not develop infections. We hypothesized that S. suis strains in healthy carrier pigs may have the ability to produce bacteriocins, which may contribute to preventing infections by pathogenic S. suis strains. Two of ten S. suis serotype 2 strains isolated from healthy carrier pigs exhibited antibacterial activity against pathogenic S. suis isolates. The bacteriocin produced by S. suis 3908 was purified to homogeneity using a three-step procedure: ammonium sulfate precipitation, cationic exchange HPLC, and reversed-phase HPLC. The bacteriocin, called suicin 3908, had a low molecular mass; was resistant to heat, pH, and protease treatments; and possessed membrane permeabilization activity. Additive effects were obtained when suicin 3908 was used in combination with penicillin G or amoxicillin. The amino acid sequence of suicin 3908 suggested that it is lantibiotic-related and made it possible to identify a bacteriocin locus in the genome of S. suis D12. The putative gene cluster involved in suicin production by S. suis 3908 was amplified by PCR, and the sequence analysis revealed the presence of nine open reading frames (ORFs), including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Suicin 3908, which is encoded by the suiA gene, exhibited approximately 50% identity with bovicin HJ50 (Streptococcus bovis), thermophilin 1277 (Streptococcus thermophilus), and macedovicin (Streptococcus macedonicus). Given that S. suis 3908 cannot cause infections in animal models, that it is susceptible to conventional antibiotics, and that it produces a bacteriocin with antibacterial activity against all pathogenic S. suis strains tested, it could potentially be used to prevent infections and to reduce antibiotic use by the swine industry.


Assuntos
Bacteriocinas , Genes Bacterianos/fisiologia , Família Multigênica/fisiologia , Fases de Leitura Aberta/fisiologia , Streptococcus suis , Animais , Bacteriocinas/biossíntese , Bacteriocinas/genética , Streptococcus suis/genética , Streptococcus suis/isolamento & purificação , Streptococcus suis/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...