Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 629892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642986

RESUMO

While the backpropagation of error algorithm enables deep neural network training, it implies (i) bidirectional synaptic weight transport and (ii) update locking until the forward and backward passes are completed. Not only do these constraints preclude biological plausibility, but they also hinder the development of low-cost adaptive smart sensors at the edge, as they severely constrain memory accesses and entail buffering overhead. In this work, we show that the one-hot-encoded labels provided in supervised classification problems, denoted as targets, can be viewed as a proxy for the error sign. Therefore, their fixed random projections enable a layerwise feedforward training of the hidden layers, thus solving the weight transport and update locking problems while relaxing the computational and memory requirements. Based on these observations, we propose the direct random target projection (DRTP) algorithm and demonstrate that it provides a tradeoff between accuracy and computational cost that is suitable for adaptive edge computing devices.

2.
Front Neurosci ; 14: 637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903824

RESUMO

Hand gestures are a form of non-verbal communication used by individuals in conjunction with speech to communicate. Nowadays, with the increasing use of technology, hand-gesture recognition is considered to be an important aspect of Human-Machine Interaction (HMI), allowing the machine to capture and interpret the user's intent and to respond accordingly. The ability to discriminate between human gestures can help in several applications, such as assisted living, healthcare, neuro-rehabilitation, and sports. Recently, multi-sensor data fusion mechanisms have been investigated to improve discrimination accuracy. In this paper, we present a sensor fusion framework that integrates complementary systems: the electromyography (EMG) signal from muscles and visual information. This multi-sensor approach, while improving accuracy and robustness, introduces the disadvantage of high computational cost, which grows exponentially with the number of sensors and the number of measurements. Furthermore, this huge amount of data to process can affect the classification latency which can be crucial in real-case scenarios, such as prosthetic control. Neuromorphic technologies can be deployed to overcome these limitations since they allow real-time processing in parallel at low power consumption. In this paper, we present a fully neuromorphic sensor fusion approach for hand-gesture recognition comprised of an event-based vision sensor and three different neuromorphic processors. In particular, we used the event-based camera, called DVS, and two neuromorphic platforms, Loihi and ODIN + MorphIC. The EMG signals were recorded using traditional electrodes and then converted into spikes to be fed into the chips. We collected a dataset of five gestures from sign language where visual and electromyography signals are synchronized. We compared a fully neuromorphic approach to a baseline implemented using traditional machine learning approaches on a portable GPU system. According to the chip's constraints, we designed specific spiking neural networks (SNNs) for sensor fusion that showed classification accuracy comparable to the software baseline. These neuromorphic alternatives have increased inference time, between 20 and 40%, with respect to the GPU system but have a significantly smaller energy-delay product (EDP) which makes them between 30× and 600× more efficient. The proposed work represents a new benchmark that moves neuromorphic computing toward a real-world scenario.

3.
IEEE Trans Biomed Circuits Syst ; 13(5): 999-1010, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31329562

RESUMO

Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient SNNs still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this paper, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86 mm 2 in 65-nm CMOS, achieving a high density of 738k synapses/mm 2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.


Assuntos
Computadores , Redes Neurais de Computação , Plasticidade Neuronal , Neurônios , Humanos
4.
IEEE Trans Biomed Circuits Syst ; 13(1): 145-158, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418919

RESUMO

Shifting computing architectures from von Neumann to event-based spiking neural networks (SNNs) uncovers new opportunities for low-power processing of sensory data in applications such as vision or sensorimotor control. Exploring roads toward cognitive SNNs requires the design of compact, low-power and versatile experimentation platforms with the key requirement of online learning in order to adapt and learn new features in uncontrolled environments. However, embedding online learning in SNNs is currently hindered by high incurred complexity and area overheads. In this paper, we present ODIN, a 0.086-mm 2 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm FDSOI CMOS achieving a minimum energy per synaptic operation (SOP) of 12.7 pJ. It leverages an efficient implementation of the spike-driven synaptic plasticity (SDSP) learning rule for high-density embedded online learning with only 0.68  µm 2 per 4-bit synapse. Neurons can be independently configured as a standard leaky integrate-and-fire model or as a custom phenomenological model that emulates the 20 Izhikevich behaviors found in biological spiking neurons. Using a single presentation of 6k 16 × 16 MNIST training images to a single-layer fully-connected 10-neuron network with on-chip SDSP-based learning, ODIN achieves a classification accuracy of 84.5%, while consuming only 15 nJ/inference at 0.55 V using rank order coding. ODIN thus enables further developments toward cognitive neuromorphic devices for low-power, adaptive and low-cost processing.


Assuntos
Potenciais de Ação/fisiologia , Internet , Metais/química , Redes Neurais de Computação , Neurônios/fisiologia , Óxidos/química , Semicondutores , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Probabilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...