Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Magn Reson Imaging ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963154

RESUMO

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
Quant Imaging Med Surg ; 13(11): 7467-7483, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969627

RESUMO

Background: The field of orthopedics seeks effective, safer methods for evaluating articular cartilage regeneration. Despite various treatment innovations, non-invasive, contrast-free full quantitative assessments of hyaline articular cartilage's regenerative potential using compositional magnetic resonance (MR) sequences remain challenging. In this context, our aim was to investigate the effectiveness of different MR sequences for quantitative assessment of cartilage and to compare them with the current gold standard delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) measurements. Methods: We employed ex vivo imaging in a preclinical minipig model to assess knee cartilage regeneration. Standardized osteochondral defects were drilled in the proximal femur of the specimens (n=14), which were divided into four groups. Porcine collagen scaffolds seeded with autologous adipose-derived stromal cells (ASC), autologous bone marrow stromal cells (BMSC), and unseeded scaffolds (US) were implanted in femoral defects. Furthermore, there was a defect group which received no treatment. After 6 months, the specimens were examined using different compositional MR methods, including the gold standard dGEMRIC as well as T1, T2, T2*, and T1ρ techniques. The statistical evaluation involved comparing the defect region with the uninjured tibia and femur cartilage layers and all measurements were performed on a clinical 3T MR Scanner. Results: In the untreated defect group, we observed significant differences in the defect region, with dGEMRIC values significantly lower (404.86±64.2 ms, P=0.018) and T2 times significantly higher (44.24±2.75 ms, P<0.001). Contrastingly, in all three treatment groups (ASC, BMSC, US), there were no significant differences among the three regions in the dGEMRIC sequence, suggesting successful cartilage regeneration. However, T1, T2*, and T1ρ sequences failed to detect such differences, highlighting their lower sensitivity for cartilage regeneration. Conclusions: As expected, dGEMRIC is well suited for monitoring cartilage regeneration. Interestingly, T2 imaging also proved to be a reliable cartilage imaging technique and thus offers a contrast agent-free alternative to the former gold standard for subsequent in vivo studies investigating the cartilage regeneration potential of different treatment modalities.

3.
Diagnostics (Basel) ; 13(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37238230

RESUMO

(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.

4.
J Clin Med ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36983306

RESUMO

Low levels of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) values are indicative of cartilage degeneration. Patients with early rheumatoid arthritis are known to have low dGEMRIC values due to inflammatory activity. The additional effect of biological disease-modifying antirheumatic drug (bDMARD) and conventional synthetic disease-modifying antirheumatic drug (csDMARD) treatment on cartilage status is still unclear. In this prospective, double-blinded, randomized proof-of-concept clinical trial, patients with early rheumatoid arthritis (disease duration less than 12 months from symptoms onset) were treated with methotrexate + adalimumab (10 patients: 6/4 (f/m)). A control group with methotrexate alone (four patients: 2/2 (f/m)) was used. Cartilage integrity in the metacarpophalangeal joints was compared using dGEMRIC at baseline, 12, and 24 weeks after treatment initiation. A statistically significant increase in dGEMRIC levels was found in the adalimumab group considering the results after 12 and 24 weeks of therapy (p < 0.05) but not in the control group (p: non-significant). After 24 weeks, a tendency towards increased dGEMRIC values under combination therapy was observed, whereas methotrexate alone showed a slight decrease without meeting the criteria of significance (dGEMRIC mean change: +85.8 ms [-156.2-+346.5 ms] vs. 30.75 ms [-273.0-+131.0 ms]; p: non-significant). After 24 weeks of treatment with a combination of methotrexate and adalimumab, a trend indicating improvement in cartilage composition is seen in patients with early rheumatoid arthritis. However, treatment with methotrexate alone showed no change in cartilage composition, as observed in dGEMRIC sequences of metacarpophalangeal joints.

5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142810

RESUMO

Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare between different studies, because of the high influence of hardware configurations and sequence settings on the SNR, we further set out to measure the apparent tissue sodium content (aTSC) in the AT as a better comparable parameter. Ten healthy controls and one patient with tendinopathy in the AT were examined using a clinical 3 Tesla (T) MRI scanner in conjunction with a dual tuned 1H/23Na surface coil to measure 23Na SNR and aTSC in their ATs. 23Na T1 and T2* of the AT were also measured for three controls to correct for different relaxation behavior. The results were as follows: 23Na SNR = 11.7 ± 2.2, aTSC = 82.2 ± 13.9 mM, 23Na T1 = 20.4 ± 2.4 ms, 23Na T2s* = 1.4 ± 0.4 ms, and 23Na T2l* = 13.9 ± 0.8 ms for the whole AT of healthy controls with significant regional differences. These are the first reported aTSCs and 23Na relaxation times for the AT using sodium MRI and may serve for future comparability in different studies regarding examinations of diseased ATs with sodium MRI.


Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Proteoglicanas , Reprodutibilidade dos Testes , Sódio
6.
Quant Imaging Med Surg ; 12(8): 4190-4201, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919061

RESUMO

Background: Clinical-standard morphologic magnetic resonance imaging (MRI) is limited in the refined diagnosis of posterior cruciate ligament (PCL) injuries. Quantitative MRI sequences such as ultrashort echo-time (UTE)-T2* mapping or conventional T2* mapping have been theorized to quantify ligament (ultra-) structure and integrity beyond morphology. This study evaluates their diagnostic potential in identifying and differentiating partial and complete PCL injuries in a standardized graded injury model. Methods: Ten human cadaveric knee joint specimens were imaged on a clinical 3.0 T MRI scanner using morphologic, conventional T2* mapping, and UTE-T2* mapping sequences before and after standardized arthroscopic partial and complete PCL transection. Following manual segmentation, quantitative T2* and underlying texture features (i.e., energy, homogeneity, and variance) were analyzed for each specimen and PCL condition, both for the entire PCL and its subregions. For statistical analysis, Friedman's test followed by Dunn's multiple comparison test was used against the level of significance of P≤0.01. Results: For the entire PCL, T2* was significantly increased as a function of injury when acquired with the UTE-T2* sequence [entire PCL: 11.1±3.1 ms (intact); 10.9±4.6 ms (partial); 14.3±4.9 ms (complete); P<0.001], but not when acquired with the conventional T2* sequence [entire PCL: 10.0±3.2 ms (intact); 11.4±6.2 ms (partial); 15.5±7.8 ms (complete); P=0.046]. The PCL subregions and texture variables showed variable changes indicative of injury-associated disorganization. Conclusions: In contrast to the conventional T2* mapping, UTE-T2* mapping is more receptive in the detection of structural damage of the PCL and allows quantitative assessment of ligament (ultra-)structure and integrity that may help to improve diagnostic differentiation of distinct injury states. Once further substantiated beyond the in-situ setting, UTE-T2* mapping may refine diagnostic evaluation of PCL injuries and -possibly- monitor ligament healing, ageing, degeneration, and inflammation.

7.
Obes Surg ; 32(10): 3340-3350, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35939221

RESUMO

PURPOSE: This study investigates the long-term effects of biliopancreatic diversion with duodenal switch (BPD-DS) on patients with advanced type 2 diabetes mellitus (T2DM) while paying special attention to preoperative diabetes severity. MATERIALS AND METHODS: A retrospective analysis was conducted using prospective and current data on patients who underwent an open BPD-DS 6-12 years ago. Patients were stratified according to preoperative diabetes severity into 4 groups (group 1: oral antidiabetic drugs only; group 2: insulin < 5 years; group 3: insulin 5-10 years; group 4: insulin > 10 years). The primary endpoint was T2DM remission rate 6-12 years after BPD-DS as a function of preoperative diabetes severity. RESULTS: Ninety-one patients with advanced T2DM were included. Sixty-two patients were available for follow-up (rate of 77%). Follow-up was performed (mean ± SD) 8.9 ± 1.3 years after surgery. Glycated hemoglobin (HbA1c) levels were 9.4 ± 2.0% before surgery and decreased to 5.1 ± 0.8% after 1 year and 5.4 ± 1.0% after 6-12 years. Insulin discontinuation rate after surgery as well as the rate of long-term remission decreased steadily from groups 1 to 4, while long-term mortality increased. T2DM remission rates were 93%, 88%, 45%, and 40% in groups 1, 2, 3, and 4, respectively. Late relapse of T2DM occurred in 3 patients (5%). CONCLUSIONS: BPD-DS causes a rapid and long-lasting normalization of glycemic metabolism in patients with advanced T2DM. T2DM remission rate after 6-12 years varies significantly (from 40% to more than 90%) and is highly dependent on preoperative diabetes severity.


Assuntos
Desvio Biliopancreático , Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/metabolismo , Duodeno/cirurgia , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Redução de Peso
8.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805925

RESUMO

Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.


Assuntos
Disco Intervertebral , Imageamento por Ressonância Magnética , Glicosaminoglicanos , Humanos , Imageamento por Ressonância Magnética/métodos , Prótons
9.
Tomography ; 8(3): 1277-1292, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35645392

RESUMO

Based on in silico, in vitro, in situ, and in vivo evaluations, this study aims to establish and optimize the chemical exchange saturation transfer (CEST) imaging of lactate (Lactate-CEST­LATEST). To this end, we optimized LATEST sequences using Bloch−McConnell simulations for optimal detection of lactate with a clinical 3 T MRI scanner. The optimized sequences were used to image variable lactate concentrations in vitro (using phantom measurements), in situ (using nine human cadaveric lower leg specimens), and in vivo (using four healthy volunteers after exertional exercise) that were then statistically analyzed using the non-parametric Friedman test and Kendall Tau-b rank correlation. Within the simulated Bloch−McConnell equations framework, the magnetization transfer ratio asymmetry (MTRasym) value was quantified as 0.4% in the lactate-specific range of 0.5−1 ppm, both in vitro and in situ, and served as the imaging surrogate of the lactate level. In situ, significant differences (p < 0.001) and strong correlations (τ = 0.67) were observed between the MTRasym values and standardized intra-muscular lactate concentrations. In vivo, a temporary increase in the MTRasym values was detected after exertional exercise. In this bench-to-bedside comprehensive feasibility study, different lactate concentrations were detected using an optimized LATEST imaging protocol in vitro, in situ, and in vivo at 3 T, which prospectively paves the way towards non-invasive quantification and monitoring of lactate levels across a broad spectrum of diseases.


Assuntos
Ácido Láctico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Fenômenos Físicos , Prótons
10.
Diagnostics (Basel) ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204555

RESUMO

Currently, clinical indications for the application of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging (MRI) are increasingly being questioned. Consequently, this study aimed to evaluate the additional diagnostic value of contrast enhancement in MRI of the hand in patients with rheumatoid arthritis (RA). Thirty-one patients with RA (mean age, 50 ± 14 years (range, 18-72 years)) underwent morphologic MRI scans on a clinical 3 T scanner. MRI studies were analyzed based on (1) the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) and (2) the GBCA-free RAMRIS version, termed RAMRIS Sine-Gadolinium-For-Experts (RAMRIS-SAFE), in which synovitis and tenosynovitis were assessed using the short-tau inversion-recovery sequence instead of the post-contrast T1-weighted sequence. The synovitis subscores in terms of Spearman's ρ, as based on RAMRIS and RAMRIS-SAFE, were almost perfect (ρ = 0.937; p < 0.001), while the tenosynovitis subscores were less strongly correlated (ρ = 0.380 p = 0.035). Correlation between the total RAMRIS and RAMRIS-SAFE was also almost perfect (ρ = 0.976; p < 0.001). Inter-rater reliability in terms of Cohen's κ was high (0.963 ≤ κ ≤ 0.925). In conclusion, RAMRIS-SAFE as the GBCA-free version of the well-established RAMRIS is a patient-friendly and resource-efficient alternative for assessing disease-related joint changes in RA. As patients with RA are subject to repetitive GBCA applications, non-contrast imaging protocols should be considered.

11.
Diagnostics (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611395

RESUMO

In recent years, much research evaluating the radiographic destruction of finger joints in patients with rheumatoid arthritis (RA) using deep learning models was conducted. Unfortunately, most previous models were not clinically applicable due to the small object regions as well as the close spatial relationship. In recent years, a new network structure called RetinaNets, in combination with the focal loss function, proved reliable for detecting even small objects. Therefore, the study aimed to increase the recognition performance to a clinically valuable level by proposing an innovative approach with adaptive changes in intersection over union (IoU) values during training of Retina Networks using the focal loss error function. To this end, the erosion score was determined using the Sharp van der Heijde (SvH) metric on 300 conventional radiographs from 119 patients with RA. Subsequently, a standard RetinaNet with different IoU values as well as adaptively modified IoU values were trained and compared in terms of accuracy, mean average accuracy (mAP), and IoU. With the proposed approach of adaptive IoU values during training, erosion detection accuracy could be improved to 94% and an mAP of 0.81 ± 0.18. In contrast Retina networks with static IoU values achieved only an accuracy of 80% and an mAP of 0.43 ± 0.24. Thus, adaptive adjustment of IoU values during training is a simple and effective method to increase the recognition accuracy of small objects such as finger and wrist joints.

12.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943538

RESUMO

Sodium MRI has the potential to depict cartilage health accurately, but synovial fluid can influence the estimation of sodium parameters of cartilage. Therefore, this study aimed to reduce the impact of synovial fluid to render the quantitative compositional analyses of cartilage tissue technically more robust. Two dedicated protocols were applied for determining sodium T1 and T2* relaxation times. For each protocol, data were acquired from 10 healthy volunteers and one patient with patellar cartilage damage. Data recorded with multiple repetition times for T1 measurement and multi-echo data acquired with an additional inversion recovery pulse for T2* measurement were analysed using biexponential models to differentiate longitudinal relaxation components of cartilage (T1,car) and synovial fluid (T1,syn), and short (T2s*) from long (T2l*) transversal relaxation components. Sodium relaxation times and concentration estimates in patellar cartilage were successfully determined: T1,car = 14.5 ± 0.7 ms; T1,syn = 37.9 ± 2.9 ms; c(T1-protocol) = 200 ± 48 mmol/L; T2s* = 0.4 ± 0.1 ms; T2l* = 12.6 ± 0.7 ms; c(T2*-protocol) = 215 ± 44 mmol/L for healthy volunteers. In conclusion, a robust determination of sodium relaxation times is possible at a clinical field strength of 3T to quantify sodium concentrations, which might be a valuable tool to determine cartilage health.

13.
Diagnostics (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679487

RESUMO

T2 mapping assesses tissue ultrastructure and composition, yet the association of imaging features and tissue functionality is oftentimes unclear. This study aimed to elucidate this association for the posterior cruciate ligament (PCL) across the micro- and macroscale and as a function of loading. Ten human cadaveric knee joints were imaged using a clinical 3.0T scanner and high-resolution morphologic and T2 mapping sequences. Emulating the posterior drawer test, the joints were imaged in the unloaded (δ0) and loaded (δ1) configurations. For the entire PCL, its subregions, and its osseous insertion sites, loading-induced changes were parameterized as summary statistics and texture variables, i.e., entropy, homogeneity, contrast, and variance. Histology confirmed structural integrity. Statistical analysis was based on parametric and non-parametric tests. Mean PCL length (37.8 ± 1.8 mm [δ0]; 44.0 ± 1.6 mm [δ1] [p < 0.01]), mean T2 (35.5 ± 2.0 ms [δ0]; 37.9 ± 1.3 ms [δ1] [p = 0.01]), and mean contrast values (4.0 ± 0.6 [δ0]; 4.9 ± 0.9 [δ1] [p = 0.01]) increased significantly under loading. Other texture features or ligamentous, osseous, and meniscal structures remained unaltered. Beyond providing normative T2 values across various scales and configurations, this study suggests that ligaments can be imaged morphologically and functionally based on joint loading and advanced MRI acquisition and post-processing techniques to assess ligament integrity and functionality in variable diagnostic contexts.

14.
Diagnostics (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208361

RESUMO

While morphologic magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of ligamentous wrist injuries, it is merely static and incapable of diagnosing dynamic wrist instability. Based on real-time MRI and algorithm-based image post-processing in terms of convolutional neural networks (CNNs), this study aims to develop and validate an automatic technique to quantify wrist movement. A total of 56 bilateral wrists (28 healthy volunteers) were imaged during continuous and alternating maximum ulnar and radial abduction. Following CNN-based automatic segmentations of carpal bone contours, scapholunate and lunotriquetral gap widths were quantified based on dedicated algorithms and as a function of wrist position. Automatic segmentations were in excellent agreement with manual reference segmentations performed by two radiologists as indicated by Dice similarity coefficients of 0.96 ± 0.02 and consistent and unskewed Bland-Altman plots. Clinical applicability of the framework was assessed in a patient with diagnosed scapholunate ligament injury. Considerable increases in scapholunate gap widths across the range-of-motion were found. In conclusion, the combination of real-time wrist MRI and the present framework provides a powerful diagnostic tool for dynamic assessment of wrist function and, if confirmed in clinical trials, dynamic carpal instability that may elude static assessment using clinical-standard imaging modalities.

15.
Diagnostics (Basel) ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067470

RESUMO

Lumbar intervertebral disc (IVD) degeneration is characterized by structural and compositional changes. This study aimed to assess the glycosaminoglycan (GAG) content of IVDs of patients with adolescent idiopathic scoliosis (AIS) and healthy controls using GAG chemical exchange saturation transfer (gagCEST) imaging. Ten AIS patients (mean age 18.3 ± 8.2 years) and 16 healthy controls (mean age 25.5 ± 1.7 years) were included. Clinical standard morphologic MR images (T1w-, T2w-, and STIR-sequences), to rule out further spinal disorders and assess IVD degeneration using the Pfirrmann score, and compositional gagCEST sequences were acquired on a 3T MRI. In AIS patients, the most distal scoliotic curve was determined on whole-spine conventional radiographs and morphological MRI and IVDs were divided as to whether they were affected by scoliotic deformity, i.e., proximal (affected, aIVDs) or distal (unaffected, uaIVDs) to the stable vertebra of the most distal scoliotic curve. Linear mixed models were used to compare mean gagCEST-values. Over all segments, AIS-patients' IVDs exhibited significantly lower gagCEST-values than the controls: 2.76 [2.32, 3.20]% (AIS), 3.51 [3.16, 3.86]% (Control); p = 0.005. Meanwhile, no significant differences were found for gagCEST values comparing aIVDs with uaIVDs. In conclusion, as a powerful diagnostic adjunct, gagCEST imaging may be prospectively applied to detect early compositional degenerative changes in patients suffering from AIS.

16.
Diagnostics (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652924

RESUMO

Using glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) magnetic resonance imaging (MRI), this study comparatively evaluated the GAG contents of lumbar intervertebral disks (IVDs) of patients with non-specific low back pain (nsLBP), radiculopathy, and asymptomatic volunteers to elucidate the association of clinical manifestation and compositional correlate. A total of 18 patients (mean age 57.5 ± 22.5 years) with radiculopathy, 16 age-matched patients with chronic nsLBP and 20 age-matched volunteers underwent standard morphologic and compositional gagCEST MRI on a 3T scanner. In all cohorts, GAG contents of lumbar IVDs were determined using gagCEST MRI. An assessment of morphologic IVD degeneration based on the Pfirrmann classification and T2-weighted sequences served as a reference. A linear mixed model adjusted for multiple confounders was used for statistical evaluation. IVDs of patients with nsLBP showed lower gagCEST values than those of volunteers (nsLBP: 1.3% [99% confidence intervals (CI): 1.0; 1.6] vs. volunteers: 1.9% [99% CI: 1.6; 2.2]). Yet, IVDs of patients with radiculopathy (1.8% [99% CI: 1.4; 2.1]) were not different from patients with nsLBP or volunteers. In patients with radiculopathy, IVDs directly adjacent to IVD extrusions demonstrated lower gagCEST values than distant IVDs (adjacent: 0.9% [99% CI: 0.3; 1.5], distant: 2.1% [99% CI: 1.7; 2.5]). Advanced GAG depletion in nsLBP and directly adjacent to IVD extrusions in radiculopathy indicates close interrelatedness of clinical pathology and compositional degeneration.

17.
Diagnostics (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498217

RESUMO

BACKGROUND: Even though cartilage loss is a known feature of psoriatic (PsA) and rheumatoid arthritis (RA), research is sparse on its role in the pathogenesis of PsA, its potential use for disease monitoring and for differentiation from RA. We therefore assessed the use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) to evaluate biochemical cartilage changes in metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in PsA patients and compared these to RA patients. MATERIALS AND METHODS: A total of 17 patients with active PsA and 20 patients with active RA were evaluated by high-resolution 3 Tesla dGEMRIC using a dedicated 16-channel hand coil. Images were analyzed by two independent raters for dGEMRIC indices and joint space width (JSW) at MCP and PIP joint levels. RESULTS: No significant differences of dGEMRIC values could be found between both study populations (PsA 472.25 ms, RA 461.11 ms; p = 0.763). In all RA and most PsA patients, PIP joints showed significantly lower dGEMRIC indices than MCP joints (RA: D2: p = 0.009, D3: p = 0.008, D4: p = 0.002, D5: p = 0.002; PsA: D3: p = 0.001, D4: p = 0.004). Most joint spaces had similar widths in both disease entities and no significant differences were found. CONCLUSIONS: As evaluated by dGEMRIC, the molecular composition of the MCP and PIP joint cartilage of PsA patients is similar to that of RA patients, demonstrating the scientific and clinical feasibility of compositional magnetic resonance (MR) imaging in these disease entities. Patterns and severity of compositional cartilage degradation of the finger joints may therefore be assessed beyond mere morphology in PsA and RA patients.

18.
MAGMA ; 34(2): 249-260, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32725359

RESUMO

OBJECTIVE: To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS: Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS: The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION: In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.


Assuntos
Cartilagem Articular , Estudos de Viabilidade , Glicosaminoglicanos , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
19.
Acta Radiol ; 62(7): 875-881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32727212

RESUMO

BACKGROUND: Motion correction is mandatory for the functional Fourier decomposition magnetic resonance imaging (FD-MRI) of the lungs. Therefore, it is important to evaluate the quality of various image-registration algorithms for pulmonary FD-MRI and to determine their impact on FD-MRI outcome. PURPOSE: To evaluate different image-registration algorithms for FD-MRI in functional lung imaging. MATERIAL AND METHODS: Fifteen healthy volunteers were examined in a 1.5-T whole-body MR scanner (Magnetom Avanto, Siemens AG) with a non-contrast enhanced 2D TrueFISP pulse sequence in coronal view and free-breathing (acquisition time 45 s, 250 images). Three image-registration algorithms were used to compensate the spatial variation of the lungs (fMRLung 3.0, ANTs, and Elastix). Quality control for image registration was performed by edge detection (ED), quotient image criterion (QI), and dice similarity coefficient (DSC). Ventilation, perfusion, and a ventilation/perfusion quotient (V/Q) were calculated using the three registered datasets. RESULTS: Average computing times for the three image-registration algorithms were 1.0 ± 1.6 min, 38.0 ± 13.5 min, and 354 ± 78 min for fMRLung, ANTs, and Elastix, respectively. No significant difference in the quality of motion correction provided by different image-registration algorithms occurred. Significant differences were observed between fMRLung- and Elastix-based perfusion values ​​of the left lung as well as fMRLung- and ANTs-based V/Q quotient of the right and the entire lung (P < 0.05). Other ventilation and perfusion values were not significantly different. CONCLUSION: The mandatory motion correction for functional FD-MRI of the lung can be achieved through different image-registration algorithms with consistent quality. However, a significantly difference in computing time between the image-registration algorithms still requires an optimization.


Assuntos
Algoritmos , Análise de Fourier , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Masculino , Circulação Pulmonar/fisiologia , Ventilação Pulmonar/fisiologia , Valores de Referência , Reprodutibilidade dos Testes , Relação Ventilação-Perfusão/fisiologia
20.
Diagnostics (Basel) ; 10(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333853

RESUMO

BACKGROUND: To evaluate whether a simplified (s) version of the psoriatic arthritis magnetic resonance imaging score (PsAMRIS), sPsAMRIS, is a potential tool for therapy monitoring in psoriatic arthritis (PsA). METHODS: Seventeen patients with active psoriatic arthritis (PsA) underwent magnetic resonance imaging (MRI) at 3 T of the clinically dominant hand at baseline and after 6 months. Scoring was performed by two musculoskeletal radiologists in terms of the PsAMRIS and sPsAMRIS, which is a simplified version with reduced item numbers based on prior evaluation of responsiveness to change by standardized response means (SRMs). Both scores were compared by calculation of overall and each sub-score's SRMs and relative efficacy (RE) after bootstrapping. RESULTS: PsAMRIS sub-scores of MCP joints 3 and 4, and proximal interphalangeal (PIP) joint 4 had the highest SRM (-0.07 each), indicating highest responsiveness to change, and were, therefore, included in sPsAMRIS. Compared to PsAMRIS, sPsAMRIS was characterized by higher SRMs (sPsAMRIS: -0.13 vs. PsAMRIS: -0.02) and higher RE (29.46). sPsAMRIS and PsAMRIS were highly correlated at baseline (r = 0.75, p < 0.01 (Pearson's correlation)) and at 6-month follow-up (r = 0.64, p = 0.01). Mean time burden for completion of scoring per MRI study was significantly reduced when using PsAMRIS (469 ± 87.03 s) as compared to sPsAMRIS (140.1 ± 21.25 s) (p < 0.001). CONCLUSION: Due to its similar responsiveness to change compared to standard PsAMRIS, and time efficiency, sPsAMRIS might be a potential diagnostic tool to quantitatively assess and monitor therapy in PsA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA