Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 432(7020): 980-7, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15616552

RESUMO

Cycles of protein phosphorylation are fundamental in regulating the progression of the eukaryotic cell through its division cycle. Here we test the complement of Drosophila protein kinases (kinome) for cell cycle functions after gene silencing by RNA-mediated interference. We observed cell cycle dysfunction upon downregulation of 80 out of 228 protein kinases, including most kinases that are known to regulate the division cycle. We find new enzymes with cell cycle functions; some of these have family members already known to phosphorylate microtubules, actin or their associated proteins. Additionally, depletion of several signalling kinases leads to specific mitotic aberrations, suggesting novel roles for familiar enzymes. The survey reveals the inter-digitation of systems that monitor cellular physiology, cell size, cellular stress and signalling processes with the basic cell cycle regulatory machinery.


Assuntos
Ciclo Celular/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Genoma , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Ciclo Celular/genética , Proliferação de Células , Citocinese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fase G2 , Genômica , Mitose/fisiologia , Mutação/genética , Estado Nutricional , Proteínas Quinases/genética , Interferência de RNA , Fase S , Transdução de Sinais , Fuso Acromático/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiopatologia
2.
Genetics ; 159(3): 965-80, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11729145

RESUMO

The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Mitose , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Anáfase , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdh1 , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes/antagonistas & inibidores , Diploide , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/metabolismo , Fase G1 , Galactose/farmacologia , Genótipo , Glucose/farmacologia , Meiose , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares , Fenótipo , Plasmídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
3.
Mol Genet Genomics ; 266(3): 374-84, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11713667

RESUMO

In Saccharomyces cerevisiae commitment to cell division occurs at a point in G1 termed Start. This important transition is regulated by the cyclin-dependent kinase Cdc28, in association with the G1 cyclins Cln1, 2 and 3. Transcription of the G1 cyclins is induced by the transcription factor complexes SBF (Swi4-Swi6) and MBF (Mbp1-Swi6); however, data suggest that other proteins are also able to regulate their expression. We previously identified Rme1, a transcription factor with a well documented role in negatively regulating IME1 expression and meiosis, as an activator of CLN2 transcription. We now show that Rme1 acts through two specific Rme1 response elements in the CLN2 promoter to induce expression of the gene. We have analysed in detail the timing of RME1 transcription at the end of mitosis and in G1, and the roles of the transcription factors Ace2 and Swi5 in mediating this expression. We also demonstrate that the Rme1 protein is cell cycle regulated, peaking in G1 and appearing in the nucleus at this time. Finally, the role of RME1 in cell cycle regulation is confirmed by the observation of periodic RME1 expression in diploid cells, where it has no IME1 repressor function; this finding emphasises its role in the regulation of CLN2 expression in G1.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Ciclinas/biossíntese , Proteínas Fúngicas/biossíntese , Fosfoproteínas/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Western Blotting , Ciclinas/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Mitose/genética , Mutagênese/genética , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/fisiologia
4.
J Cell Sci ; 114(Pt 12): 2345-54, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11493673

RESUMO

In eukaryotes an abnormal spindle activates a conserved checkpoint consisting of the MAD and BUB genes that results in mitotic arrest at metaphase. Recently, we and others identified a novel Bub2-dependent branch to this checkpoint that blocks mitotic exit. This cell-cycle arrest depends upon inhibition of the G-protein Tem1 that appears to be regulated by Bfa1/Bub2, a two-component GTPase-activating protein, and the exchange factor Lte1. Here, we find that Bub2 and Bfa1 physically associate across the entire cell cycle and bind to Tem1 during mitosis and early G1. Bfa1 is multiply phosphorylated in a cell-cycle-dependent manner with the major phosphorylation occurring in mitosis. This Bfa1 phosphorylation is Bub2-dependent. Cdc5, but not Cdc15 or Dbf2, partly controls the phosphorylation of Bfa1 and also Lte1. Following spindle checkpoint activation, the cell cycle phosphorylation of Bfa1 and Lte1 is protracted and some species are accentuated. Thus, the Bub2-dependent pathway is active every cell cycle and the effect of spindle damage is simply to protract its normal function. Indeed, function of the Bub2 pathway is also prolonged during metaphase arrests imposed by means other than checkpoint activation. In metaphase cells Bub2 is crucial to restrain downstream events such as actin ring formation, emphasising the importance of the Bub2 pathway in the regulation of cytokinesis. Our data is consistent with Bub2/Bfa1 being a rate-limiting negative regulator of downstream events during metaphase.


Assuntos
Ciclo Celular , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Mitose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Fase G1/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Genes Fúngicos/genética , Immunoblotting , Ligases/genética , Ligases/metabolismo , Metáfase/efeitos dos fármacos , Mitose/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Nocodazol/farmacologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases
5.
Curr Biol ; 11(10): 784-8, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11378390

RESUMO

The Dbf2 protein kinase functions as part of the mitotic-exit network (MEN), which controls the inactivation of the Cdc28-Clb2 kinase in late mitosis [1]. The MEN includes the Tem1 GTP binding protein; the kinases Cdc15 and Cdc5; Mob1, a protein of unknown function; and the phosphatase Cdc14 [2]. Here we have used Dbf2 kinase activity to investigate the regulation and order of function of the MEN. We find that Tem1 acts at the top of the pathway, upstream of Cdc15, which in turn functions upstream of Mob1 and Dbf2. The Cdc5 Polo-like kinase impinges at least twice on the MEN since it negatively regulates the network, probably upstream of Tem1, and is also required again for Dbf2 kinase activation. Furthermore, we find that regulation of Dbf2 kinase activity and actin ring formation at the bud neck are causally linked. In metaphase-arrested cells, the MEN inhibitor Bub2 restrains both Dbf2 kinase activity [3] and actin ring formation [4]. We find that the MEN proteins that are required for Dbf2 kinase activity are also required for actin ring formation. Thus, the MEN is crucial for the regulation of cytokinesis, as well as mitotic exit.


Assuntos
Proteínas Fúngicas/fisiologia , Mitose/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
6.
J Cell Sci ; 113 Pt 19: 3399-408, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10984431

RESUMO

Dbf2 is a multifunctional protein kinase in Saccharomyces cerevisiae that functions in transcription, the stress response and as part of a network of genes in exit from mitosis. By analogy with fission yeast it seemed likely that these mitotic exit genes would be involved in cytokinesis. As a preliminary investigation of this we have used Dbf2 tagged with GFP to examine intracellular localisation of the protein in living cells. Dbf2 is found on the centrosomes/spindle pole bodies (SPBs) and also at the bud neck where it forms a double ring. The localisation of Dbf2 is cell cycle regulated. It is on the SPBs for much of the cell cycle and migrates from there to the bud neck in late mitosis, consistent with a role in cytokinesis. Dbf2 partly co-localises with septins at the bud neck. A temperature-sensitive mutant of dbf2 also blocks progression of cytokinesis at 37 degrees C. Following cytokinesis some Dbf2 moves into the nascent bud. Localisation to the bud neck depends upon the septins and also the mitotic exit network proteins Mob1, Cdc5, Cdc14 and Cdc15. The above data are consistent with Dbf2 acting downstream in a pathway controlling cytokinesis.


Assuntos
Proteínas de Ciclo Celular , Centrossomo/metabolismo , Mitose , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Actinas/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular , Divisão Celular , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Microscopia de Fluorescência , Mitose/genética , Mutação/genética , Nocodazol/farmacologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Temperatura
7.
J Cell Sci ; 109 ( Pt 11): 2649-60, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8937983

RESUMO

We describe the maternal effect phenotype of a hypomorphic mutation in the Drosophila gene for glutamine synthetase I (GSI). The extent of development of embryos derived from homozygous mutant females is variable, although most mutant embryos fail to survive past germband elongation and none develop into larvae. These embryos are characterised by an increase in the number of yolk-like nuclei following nuclear migration to the cortex. These nuclei appear to fall into the interior of the embryo from the cortex at blastoderm. As they do so, the majority continue to show association with PCNA in synchrony with nuclei at the cortex, suggesting some continuity of the synchrony of DNA replication. However, the occurrence of nuclei that have lost cell cycle synchrony with their neighbours is not uncommon. Immunostaining of mutant embryos revealed a range of mitotic defects, ultimately resulting in nuclear fusion events, division failure or other mitotic abnormalities. A high proportion of these mitotic figures show chromatin bridging at anaphase and telophase consistent with progression through mitosis in the presence of incompletely replicated DNA. GSI is responsible for the ATP-dependent amination of glutamate to produce glutamine, which is required in the formation of amino acids, purines and pyrimidines. We discuss how the loss of glutamine could depress both protein and DNA synthesis and lead to a variety of mitotic defects in this embryonic system that lacks certain checkpoint controls.


Assuntos
Ciclo Celular , Drosophila melanogaster/enzimologia , Glutamato-Amônia Ligase/metabolismo , Mitose , Sequência de Aminoácidos , Animais , Sequência de Bases , Núcleo Celular , DNA Complementar , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/embriologia , Drosophila melanogaster/efeitos da radiação , Células Gigantes , Glutamato-Amônia Ligase/genética , Glutationa Peroxidase/metabolismo , Dados de Sequência Molecular , Mutação , Óxidos , Paraquat , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...