Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1386510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665263

RESUMO

In hypothyroid patients needing large doses of levothyroxine (L-T4) (>1.7-2 µg/kg/day) to reach euthyroidism, lactose intolerance (LI) needs to be excluded, owing to the high prevalence in the population. If LI is present, a lactose-free diet decreases the rate of L-T4 malabsorption. However, an increased requirement of L-T4 is described in patients with LI, which can be beneficially treated using lactose-free L-T4 formulation. The lactose-free liquid L-T4 formulation is able to circumvent LI malabsorption leading to the normalization of thyroid-stimulating hormone (TSH) in patients with subclinical hypothyroidism and long-term stable TSH levels.


Assuntos
Hipotireoidismo , Intolerância à Lactose , Tiroxina , Humanos , Intolerância à Lactose/tratamento farmacológico , Tiroxina/uso terapêutico , Tiroxina/farmacocinética , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Lactose , Feminino , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/metabolismo , Masculino , Pessoa de Meia-Idade , Tireotropina/sangue , Tireotropina/metabolismo , Adulto
2.
Biochem Pharmacol ; 219: 115952, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036189

RESUMO

The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.


Assuntos
Melanoma , Masculino , Humanos , Animais , Camundongos , Vemurafenib/farmacologia , Melanoma/metabolismo , Receptor Tipo 4 de Melanocortina , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mutação
3.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770355

RESUMO

The use of eco-friendly engineered nanomaterials represents a recent solution for an effective and safe treatment of contaminated dredging sludge. In this study, an eco-designed engineered material based on cross-linked nanocellulose (CNS) was applied for the first time to decontaminate a real matrix from heavy metals (namely Zn, Ni, Cu, and Fe) and other undesired elements (mainly Ba and As) in a lab-scale study, with the aim to design a safe solution for the remediation of contaminated matrices. Contaminated freshwater sludge was treated with CNS coupled with a filtering fine-mesh net, and the obtained waters were tested for acute and sublethal toxicity. In order to check the safety of the proposed treatment system, toxicity tests were conducted by exposing the bacterium Aliivibrio fischeri and the crustacean Heterocypris incongruens, while subtoxicity biomarkers such as lysosomal membrane stability, genetic, and chromosomal damage assessment were performed on the freshwater bivalve Dreissena polymorpha. Dredging sludge was found to be genotoxic, and such genotoxicity was mitigated by the combined use of CNS and a filtering fine-mesh net. Chemical analyses confirmed the results by highlighting the abetment of target contaminants, indicating the present model as a promising tool in freshwater sludge nanoremediation.

4.
Toxics ; 10(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35324736

RESUMO

The contamination of marine water bodies with petroleum hydrocarbons represents a threat to ecosystems and human health. In addition to the surface slick of crude oil, the water-soluble fraction of petroleum is responsible for the induction of severe toxic effects at different cellular and molecular levels. Some petroleum-derived hydrocarbons are classified as carcinogenic and mutagenic contaminants; therefore, the oil spill into the marine environment can have long term consequences to the biota. Therefore, new tools able to remediate crude oil water accommodation fraction pollution in marine water are highly recommended. Nanomaterials were recently proposed in environmental remediation processes. In the present in vivo study, the efficacy of pure anatase titanium nanoparticles (n-TiO2) was tested on Dicentrarchus labrax exposed to the accommodated fraction of crude oil. It was found that n-TiO2 nano-powders themselves were harmless in terms of DNA primary damage, and the capability of pure anatase n-TiO2 to lower the levels of DNA damage induced by a mixture of genotoxic pollutant was revealed. These preliminary results on a laboratory scale are the prerequisite for deepening this new technology for the abatement of the cellular effects related with oil spill pollutants released in marine environments.

5.
NPJ Breast Cancer ; 8(1): 33, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314692

RESUMO

To investigate pharmacogenetic interactions among VEGF-A, VEGFR-2, IL-8, HIF-1α, EPAS-1, and TSP-1 SNPs and their role on progression-free survival (PFS) in metastatic breast cancer (MBC) patients treated with bevacizumab plus first-line paclitaxel or with paclitaxel alone. Analyses were performed on germline DNA, and SNPs were investigated by real-time PCR technique. The multifactor dimensionality reduction (MDR) methodology was applied to investigate the interaction between SNPs. The present study was an explorative, ambidirectional cohort study: 307 patients from 11 Oncology Units were evaluated retrospectively from 2009 to 2016, then followed prospectively (NCT01935102). Two hundred and fifteen patients were treated with paclitaxel and bevacizumab, whereas 92 patients with paclitaxel alone. In the bevacizumab plus paclitaxel group, the MDR software provided two pharmacogenetic interaction profiles consisting of the combination between specific VEGF-A rs833061 and VEGFR-2 rs1870377 genotypes. Median PFS for favorable genetic profile was 16.8 vs. the 10.6 months of unfavorable genetic profile (p = 0.0011). Cox proportional hazards model showed an adjusted hazard ratio of 0.64 (95% CI, 0.5-0.9; p = 0.004). Median OS for the favorable genetic profile was 39.6 vs. 28 months of unfavorable genetic profile (p = 0.0103). Cox proportional hazards model revealed an adjusted hazard ratio of 0.71 (95% CI, 0.5-1.01; p = 0.058). In the 92 patients treated with paclitaxel alone, the results showed no effect of the favorable genetic profile, as compared to the unfavorable genetic profile, either on the PFS (p = 0.509) and on the OS (p = 0.732). The pharmacogenetic statistical interaction between VEGF-A rs833061 and VEGFR-2 rs1870377 genotypes may identify a population of bevacizumab-treated patients with a better PFS.

6.
Environ Sci Pollut Res Int ; 29(41): 62208-62218, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34825339

RESUMO

The increased titanium dioxide nanoparticles (TiO2-NPs) spread and their interaction with organic and inorganic pollutants arouses concern for the potential hazards for organisms and environment. This study tested in vitro the genotoxic effects of TiO2-NPs (1 µg/mL) and cadmium (Cd) (0.1 µg/mL) co-exposure using Dicentrarchus labrax embryonic cells (DLEC) as experimental model. The genotoxicity tests (Comet assay, Diffusion Assay and Random Amplification of Polymorphic DNA (RAPD-PCR) were conducted after 3, 24 and 48 hours of exposure to TiO2-NPs and Cd alone and in combination. The results showed that the percentage of DNA damage and apoptotic cells increases following 48 hours TiO2-NPs exposure, while DNA instability was detected for all the times tested. Cd induced genotoxic effects starting from 3 hour-exposure and for all the treatment times. Cd + TiO2-NPs co-exposure did not cause any genomic damage or apoptosis for all the exposure times. The possibility that Cd and TiO2-NPs form aggregates no longer able of penetrating the nucleus and damaging the genetic material is discussed.


Assuntos
Bass , Nanopartículas Metálicas , Nanopartículas , Animais , Cádmio/toxicidade , DNA , Dano ao DNA , Genômica , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Técnica de Amplificação ao Acaso de DNA Polimórfico , Titânio/toxicidade
7.
Nanomaterials (Basel) ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578535

RESUMO

Zinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of Dreissena polymorpha (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl2 nominal concentrations (1-10-50-100 mg/L), including those environmentally relevant. Cellulose-based nanosponges (CNS) were also tested to assess their safety and suitability for Zn removal from freshwater. Zebra mussels were exposed to 50 mg/L ZnCl2 alone or incubated with 1.25 g/L of CNS (2 h) and then removed by filtration. The effect of Zn decontamination induced by CNS has been verified by the acute toxicity bioassay Microtox®. DNA primary damage was investigated by the Comet assay; micronuclei frequency and nuclear morphological alterations were assessed by Cytome assay in mussels' haemocytes. The results confirmed the genotoxic effect of ZnCl2 in zebra mussel haemocytes at 48 h and 7-day exposure time. Zinc concentrations were measured in CNS, suggesting that cellulose-based nanosponges were able to remove Zn(II) by reducing its levels in exposure waters and soft tissues of D. polymorpha in agreement with the observed restoration of genetic damage exerted by zinc exposure alone.

8.
J Environ Manage ; 300: 113549, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543968

RESUMO

The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Dano ao DNA , Ecossistema , Monitoramento Ambiental , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
9.
Nanomaterials (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063431

RESUMO

Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 µg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.

10.
Front Endocrinol (Lausanne) ; 12: 645519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776939

RESUMO

Bisphenol A is a widely used compound found in large amount of consumer products. As concerns have been raised about its toxicological and public health effect, the use of alternatives to bisphenol A are now increasing. Bisphenol S is one of the analogues being used as a replacement for bisphenol A despite the fact that little is known about the effects of bisphenol S on living organisms. In this study, we investigated the potential endocrine and genotoxic effects of bisphenol A and bisphenol S in juvenile brown trout (Salmo trutta). The fish were exposed to the compounds for either 2 weeks or 8 weeks via sustained-release cholesterol implants containing doses of 2 mg/kg fish or 20 mg/kg fish of the substances. The effects on the thyroid hormone levels and the estrogenic disrupting marker vitellogenin were evaluated, along with the genotoxic markers micronucleated cells and erythrocyte nuclear abnormalities. An increase in plasma vitellogenin was observed in fish exposed to the high dose of bisphenol A for 2 weeks. At this experimental time the level of the thyroid hormone triiodothyronine (T3) in plasma was elevated after bisphenol S exposure at the high concentration, and paralleled by an increase of micronucleated cells. Moreover, bisphenol A induced an increase of micronuclei frequency in fish erythrocytes after the exposure at the lowest dose tested. Taken together the results indicate that both bisphenol A and its alternative bisphenol S cause endocrine disrupting and genotoxic effects in brown trout, although suggesting two different mechanisms of damage underlying bisphenol A and bisphenol S activity.


Assuntos
Compostos Benzidrílicos/toxicidade , Cromossomos/efeitos dos fármacos , Sistema Endócrino/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Truta/metabolismo , Vitelogeninas/sangue , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos/análise , Cromatografia Líquida/métodos , Disruptores Endócrinos/toxicidade , Feminino , Fígado/metabolismo , Masculino , Estresse Oxidativo , Fenóis/análise , Espectrometria de Massas por Ionização por Electrospray , Sulfonas/análise , Tri-Iodotironina/sangue
11.
Nanomaterials (Basel) ; 10(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171579

RESUMO

Given the high production and broad feasibility of nanomaterials, the application of nanotechnology includes the use of engineered nanomaterials (ENMs) to clean-up polluted media such as soils, water, air, groundwater and wastewaters, and is known as nanoremediation [...].

12.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938003

RESUMO

The contamination of freshwaters by heavy metals represents a great problem, posing a threat for human and environmental health. Cadmium is classified as carcinogen to humans and its mechanism of carcinogenicity includes genotoxic events. In this study a recently developed eco-friendly cellulose-based nanosponge (CNS) was investigated as a candidate in freshwater nano-remediation process. For this purpose, CdCl2 (0.05 mg L-1) contaminated artificial freshwater (AFW) was treated with CNS (1.25 g L-1 for 2 h), and cellular responses were analyzed before and after CNS treatment in Dreissena polymorpha hemocytes. A control group (AFW) and a negative control group (CNS in AFW) were also tested. DNA primary damage was evaluated by Comet assay while chromosomal damage and cell proliferation were assessed by Cytome assay. AFW exposed to CNS did not cause any genotoxic effect in zebra mussel hemocytes. Moreover, DNA damage and cell proliferation induced by Cd(II) turned down to control level after 2 days when CNS were used. A reduction of Cd(II)-induced micronuclei and nuclear abnormalities was also observed. CNS was thus found to be a safe and effective candidate in cadmium remediation process being efficient in metal sequestering, restoring cellular damage exerted by Cd(II) exposure, without altering cellular physiological activity.

13.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629917

RESUMO

To encourage the applicability of nano-adsorbent materials for heavy metal ion removal from seawater and limit any potential side effects for marine organisms, an ecotoxicological evaluation based on a biological effect-based approach is presented. ZnCl2 (10 mg L-1) contaminated artificial seawater (ASW) was treated with newly developed eco-friendly cellulose-based nanosponges (CNS) (1.25 g L-1 for 2 h), and the cellular and tissue responses of marine mussel Mytilus galloprovincialis were measured before and after CNS treatment. A control group (ASW only) and a negative control group (CNS in ASW) were also tested. Methods: A significant recovery of Zn-induced damages in circulating immune and gill cells and mantle edges was observed in mussels exposed after CNS treatment. Genetic and chromosomal damages reversed to control levels in mussels' gill cells (DNA integrity level, nuclear abnormalities and apoptotic cells) and hemocytes (micronuclei), in which a recovery of lysosomal membrane stability (LMS) was also observed. Damage to syphons, loss of cilia by mantle edge epithelial cells and an increase in mucous cells in ZnCl2-exposed mussels were absent in specimens after CNS treatment, in which the mantle histology resembled that of the controls. No effects were observed in mussels exposed to CNS alone. As further proof of CNS' ability to remove Zn(II) from ASW, a significant reduction of >90% of Zn levels in ASW after CNS treatment was observed (from 6.006 to 0.510 mg L-1). Ecotoxicological evaluation confirmed the ability of CNS to remove Zn from ASW by showing a full recovery of Zn-induced toxicological responses to the levels of mussels exposed to ASW only (controls). An effect-based approach was thus proven to be useful in order to further support the environmentally safe (ecosafety) application of CNS for heavy metal removal from seawater.

14.
Methods Mol Biol ; 2031: 275-286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31473965

RESUMO

Comet assay is a quick and versatile technique for assessing DNA damage in individual cells. It allows for the detection of DNA single- and double-strand breaks, as well as the presence of alkali labile sites and cross-links. Here we describe protocols for the single-cell gel electrophoresis (Comet assay) in its alkaline (pH > 13), mild alkaline (pH = 12.1) and neutral (pH = 8) versions when applied in marine animals.


Assuntos
Bivalves/genética , Ensaio Cometa/métodos , Análise de Célula Única/métodos , Animais , Bivalves/citologia , Bivalves/efeitos dos fármacos , Células Cultivadas , Criopreservação/métodos , Dano ao DNA/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Concentração de Íons de Hidrogênio , Mutagênicos/toxicidade
15.
Mol Med Rep ; 17(5): 7415-7420, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29568907

RESUMO

Recently it has been hypothesized that vanadium serves a carcinogenic role in the thyroid. However, to date, no in vivo or in vitro studies have evaluated thyroid disruption in humans and/or animals following exposure to vanadium. The present study evaluated the effect of vanadium pentoxide (V2O5) on cell viability and proliferation, and chemokine (C­X­C motif) ligand (CXCL)8 and CXCL11 secretion in normal thyrocytes. The results demonstrated that V2O5 had no effect on thyroid follicular cell viability and proliferation. However, V2O5 was able to induce the secretion of CXCL8 and CXCL11 chemokines from thyrocytes. Notably, V2O5 synergistically increased the effect of the interferon (IFN)­Î³ on CXCL11 secretion. In addition, V2O5 synergistically increased the effect of tumor necrosis factor­α on CXCL8 secretion, and abolished the inhibitory effect of IFN­Î³. Overall this induction of CXCL8 and CXCL11 secretion may lead to the induction and perpetuation of an inflammatory reaction in the thyroid. Further studies are now required to evaluate thyroid function and nodule development in subjects who are occupationally exposed, or living in polluted areas.


Assuntos
Quimiocina CXCL11/imunologia , Inflamação/induzido quimicamente , Interleucina-8/imunologia , Glândula Tireoide/efeitos dos fármacos , Compostos de Vanádio/efeitos adversos , Adulto , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Glândula Tireoide/citologia , Glândula Tireoide/imunologia , Adulto Jovem
16.
Mar Pollut Bull ; 126: 467-472, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421127

RESUMO

The Gulf of Follonica (Italy) is impacted by the chemical pollution from ancient mining activity and present industrial processes. This study was aimed to determine the bioavailability of dioxin-like compounds (DLCs) in coastal marine environment and to assess the genotoxic potential of waste waters entering the sea from an industrial canal. Moderately high levels of DCLs compounds (∑ PCDDs + PCDFs 2.18­29.00 pg/g dry wt) were detected in Mytilus galloprovincialis transplanted near the waste waters canal and their corresponding Toxic Equivalents (TEQs) calculated. In situ exposed mussels did not show any genotoxic effect (by Comet and Micronucleus assay). Otherwise, laboratory exposure to canal waters exhibited a reduced genomic template stability (by RAPD-PCR assay) but not DNA or chromosomal damage. Our data reveal the need to focus on the levels and distribution of DLCs in edible species from the study area considering their potential transfer to humans through the consumption of sea food.


Assuntos
Dioxinas/análise , Monitoramento Ambiental/métodos , Mutagênicos/análise , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Disponibilidade Biológica , Dioxinas/toxicidade , Humanos , Itália , Mutagênicos/química , Mutagênicos/toxicidade , Mytilus/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Poluentes Químicos da Água/toxicidade
17.
Front Neuroanat ; 11: 49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694773

RESUMO

Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

18.
Int J Biochem Cell Biol ; 88: 145-154, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28526615

RESUMO

Pulmonary fibrosis (PF) is the most common and aggressive interstitial lung disease, characterized by a patchy development of fibrosis leading to progressive destruction of the normal lung architecture which is preceded by an inflammatory process. Gene expression studies are important to understand the development of PF but the accuracy and reproducibility of Real-Time PCR depend on appropriate normalization strategies. This study aimed to analyze the expression variability of eight commonly used reference genes during the initial inflammatory phase of bleomycin-induced PF in a mouse model and to verify whether the selected reference genes could be applied to an in-vitro model of BLM-treated primary murine lung fibroblasts. Wild-type C57BL/6 mice (n=40) were used. Real-Time PCR was carried out on lung tissue of mice either BLM (BLM-tm) or physiological solution-treated (PSS-tm), and in primary lung fibroblasts, isolated from healthy C57BL/6 mice. Histological analysis was performed to confirm the inflammation development. During inflammation, the most stable genes resulted: PPIA, HPRT-1 and SDHA for both models; the normalization strategy was tested analyzing mRNA expression of PTX-3 and TNF-α which resulted up-regulated both in ex-vivo and in-vitro with respect to PSS-tm/fibroblasts. Histological analysis supported the results. This study identified a new set of reference genes expressed both in the in-vitro and ex-vivo models. A higher expression of both markers in BLM-tm with respect to PSS-tm indicated that BLM might lead to increased PTX-3 local production by a co-regulation with TNF-α at lung level.


Assuntos
Bleomicina/farmacologia , Perfilação da Expressão Gênica/normas , Pneumonia/tratamento farmacológico , Pneumonia/genética , Estatística como Assunto , Animais , Bleomicina/uso terapêutico , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pneumonia/patologia , Padrões de Referência , Software
19.
Curr Drug Targets ; 17(5): 515-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25547908

RESUMO

Many studies have suggested that CXCR3, CXCR5, CXCR6 and CXCR7 chemokine receptors are determinant in type 1 diabetes (T1D), expecially in autoimmunity and ß-cell destruction. In particular circulating CXCL10 level (the ligand of CXCR3) is high in T1D patients, and this suggests that CXCL10 may be a candidate for a predictive marker of T1D. Blocking the CXCL10/CXCR3 axis in newly onset of diabetes seems to be a potential strategy for the therapy of T1D. Attempts have been done in modulating or blocking CXCR5, CXCR6 and CXCR7 chemokine receptors in experimental settings of T1D. More researches are necessary to evaluate the interplay among cytokines, chemokines and the pathogenesis and therapy of T1D.


Assuntos
Quimiocina CXCL10/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Receptores CXCR/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica , Humanos , Receptores CXCR3/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR6 , Receptores de Quimiocinas/metabolismo , Receptores Virais/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
J Hazard Mater ; 297: 92-100, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25956639

RESUMO

We investigated the influence of titanium dioxide nanoparticles (nano-TiO2) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO2, CdCl2, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO2 in sea water media.


Assuntos
Cádmio/toxicidade , Brânquias/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Nanopartículas/química , Titânio/farmacocinética , Poluentes Químicos da Água/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Cádmio/farmacocinética , Ensaio Cometa , Dano ao DNA , Brânquias/metabolismo , Mytilus/genética , Mytilus/metabolismo , Óxido Nítrico/biossíntese , Distribuição Tecidual , Titânio/análise , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...