Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068924

RESUMO

Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.


Assuntos
Cannabis , Óleos Voláteis , Sesquiterpenos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cannabis/química , Doenças Neuroinflamatórias , Destilação , Sesquiterpenos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/farmacologia , Microglia , Lipopolissacarídeos/farmacologia
2.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670956

RESUMO

Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.

3.
Oxid Med Cell Longev ; 2021: 6620913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104310

RESUMO

Spent coffee grounds (SCGs), waste products of coffee beverage production, are rich in organic compounds such as phenols. Different studies have demonstrated phenol beneficial effects in counteracting neurodegenerative diseases. These diseases are associated with oxidative stress and neuroinflammation, which initiates the degeneration of neurons by overactivating microglia. Unfortunately, to date, there are no pharmacological therapies to treat these pathologies. The aim of this study was to evaluate the phenolic content of 4 different SCG extracts and their ability to counteract oxidative stress and neuroinflammation. Caffeine and 5-O-caffeoylquinic acid were the most abundant compounds in all extracts, followed by 3-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. The four extracts demonstrated a different ability to counteract oxidative stress and neuroinflammation in vitro. In particular, the methanol extract was the most effective in protecting neuron-like SH-SY5Y cells against H2O2-induced oxidative stress by upregulating endogenous antioxidant enzymes such as thioredoxin reductase, heme oxygenase 1, NADPH quinone oxidoreductase, and glutathione reductase. The water extract was the most effective in counteracting lipopolysaccharide-induced neuroinflammation in microglial BV-2 cells by strongly reducing the expression of proinflammatory mediators through the modulation of the TLR4/NF-κB pathway. On these bases, SCG extracts could represent valuable nutraceutical sources for the treatment of neurodegeneration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Café/química , Doenças do Sistema Nervoso/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Humanos , Extratos Vegetais/farmacologia
4.
J Med Chem ; 64(8): 4972-4990, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33829779

RESUMO

The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 µM), confirming the design rationale.


Assuntos
Ligantes , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anacardium/química , Anacardium/metabolismo , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Desenho de Fármacos , Humanos , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nozes/química , Nozes/metabolismo , Relação Estrutura-Atividade , Tacrina/química , Tacrina/metabolismo
5.
Antioxidants (Basel) ; 9(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731644

RESUMO

Sweet cherries (Prunus avium L.) are highly appreciated fruits for their taste, color, nutritional value, and beneficial health effects. In this work, seven new cultivars of sweet cherry were investigated for their main quality traits and nutraceutical value. The phytochemical profile of three classes of phenolic compounds and the antioxidant activity of the new cultivars were investigated through high-performance liquid chromatography with diode array detection (HPLC-DAD) and spectrophotometric assays, respectively, and compared with those of commonly commercialized cultivars. Cyanidine-3-O-rutinoside was the main anthocyanin in all genotypes, and its levels in some new cultivars were about three-fold higher than in commercial ones. The ORAC-assayed antioxidant capacity was positively correlated with the total anthocyanin index. The nutraceutical value of the new cultivars was investigated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells. Results demonstrated that the new cultivars were more effective in counteracting oxidative stress and were also able to upregulate brain-derived neurotrophic factor (BDNF), a pro-survival neurotrophin, suggesting their potential pleiotropic role in counteracting neurodegenerations.

6.
Food Res Int ; 133: 109128, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466943

RESUMO

The research of value-added applications for coffee silverskin (CSS) requires studies to investigate potential bioactive compounds and biological activities in CSS extracts. In this study, different ultrasound-assisted extraction (UAE) methods have been tested to extract bioactive compounds from CSS. The obtained extracts, were characterized using a new HPLC-MS/MS method to detect and quantify 30 bioactive compounds of 2 classes: alkaloids and polyphenols (including phenolic acids, flavonoids, and secoiridoids). CSS extracts obtained with ethanol/water (70:30) as extraction solvent showed the highest levels (p ≤ 0.05) of bioactive compounds (4.01 ± 0.34% w/w). High content of caffeine was observed with levels varying from 1.00% to 3.59% of dry weight of extract (dw). 18 phenolic compounds were detected in CSS extracts with caffeoylquinic acids (3-CQA, 5-CQA and 3,5-diCQA) as the most abundant polyphenols (3115.6 µg g to -5444.0 µg g-1). This study is also one of the first to characterize in-depth flavonoids in CSS revealing the levels of different flavonoids compounds such as rutin (1.63-8.70 µg g-1), quercetin (1.53-2.46 µg g-1), kaempferol (0.76-1.66 µg g-1) and quercitrin (0.15-0.51 µg g-1). Neuroprotective activity of silverskin extracts against H2O2-induced damage was evaluated for the first time suggesting for methanol and ethanol/water (70:30) extracts a potential role as protective agents against neurodegeneration due to their ability to counteract oxidative stress and maintain cell viability. Silverskin extracts were not inhibiting the growth of anyone of the bacterial species included in this study but data obtained by water extract might deserve a deeper future investigation on biofilm-related activities, such as quorum sensing or virulence factors' expression. From their composition and their evidenced biological activities, CSS extracts could represent valuable ingredients in nutraceutical formulations.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Café/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
7.
Oxid Med Cell Longev ; 2018: 5263985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30647811

RESUMO

Amniotic fluid stem cells (AFSCs) are characterized in vivo by a unique niche guarantying their homeostatic role in the body. Maintaining the functionality of stem cells ex vivo for clinical applications requires a continuous improvement of cell culture conditions. Cellular redox status plays an important role in stem cell biology as long as reactive oxygen species (ROS) concentration is finely regulated and their adverse effects are excluded. The aim of this study was to investigate the protective effect of two antioxidants, sulforaphane (SF) and epigallocatechin gallate (EGCG), against in vitro oxidative stress due to hyperoxia and freeze-thawing cycles in AFSCs. Human AFSCs were isolated and characterized from healthy subjects. Assays of metabolic function and antioxidant activity were performed to investigate the effect of SF and EGCG cotreatment on AFSCs. Real-time PCR was used to investigate the effect of the cotreatment on pluripotency, senescence, osteogenic and adipogenic markers, and antioxidant enzymes. Alkaline phosphatase assays and Alizarin Red staining were used to confirm osteogenic differentiation. The cotreatment with SF and EGCG was effective in reducing ROS production, increasing GSH levels, and enhancing the endogenous antioxidant defences through the upregulation of glutathione reductase, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase. Intriguingly, the cotreatment sustained the stemness state by upregulating pluripotency markers such as OCT4 and NANOG. Moreover, the cotreatment influenced senescence-associated gene markers in respect to untreated cells. The cotreatment upregulated osteogenic gene markers and promoted osteogenic differentiation in vitro. SF and EGCG can be used in combination in AFSC culture as a strategy to preserve stem cell functionality.


Assuntos
Líquido Amniótico/efeitos dos fármacos , Catequina/análogos & derivados , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Isotiocianatos/farmacologia , Espécies Reativas de Oxigênio , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...