Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758111

RESUMO

Maghemite nanoparticles functionalised with Co(II) coordination complexes at their surface show a significant increase of their magnetic anisotropy, leading to a doubling of the blocking temperature and a sixfold increase of the coercive field. Magnetometric studies suggest an enhancement that is not related to surface disordering, and point to a molecular effect involving magnetic exchange interactions mediated by the oxygen atoms at the interface as its source. Field- and temperature-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) studies show that the magnetic anisotropy enhancement is not limited to surface atoms and involves the core of the nanoparticle. These studies also point to a mechanism driven by anisotropic exchange and confirm the strength of the magnetic exchange interactions. The coupling between the complex and the nanoparticle persists at room temperature. Simulations based on the XMCD data give an effective exchange field value through the oxido coordination bridge between the Co(II) complex and the nanoparticle that is comparable to the exchange field between iron ions in bulk maghemite. Further evidence of the effectiveness of the oxido coordination bridge in mediating the magnetic interaction at the interface is given with the Ni(II) analog to the Co(II) surface-functionalised nanoparticles. A substrate-induced magnetic response is observed for the Ni(II) complexes, up to room temperature.

2.
ACS Appl Mater Interfaces ; 15(29): 35674-35683, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37431993

RESUMO

Interfaces between a water droplet and a network of pillars produce eventually superhydrophobic, self-cleaning properties. Considering the surface fraction of the surface in interaction with water, it is possible to tune precisely the contact angle hysteresis (CAH) to low values, which is at the origin of the poor adhesion of water droplets, inducing their high mobility on such a surface. However, if one wants to move and position a droplet, the lower the CAH, the less precise will be the positioning on the surface. While rigid surfaces limit the possibilities of actuation, smart surfaces have been devised with which a stimulus can be used to trigger the displacement of a droplet. Light, electron beam, mechanical stimulation like vibration, or magnetism can be used to induce a displacement of droplets on surfaces and transfer them from one position to the targeted one. Among these methods, only few are reversible, leading to anisotropy-controlled orientation of the structured interface with water. Magnetically driven superhydrophobic surfaces are the most promising reprogramming surfaces that can lead to the control of wettability and droplet guidance.

3.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904354

RESUMO

Molecularly imprinted polymers (MIPs) are really interesting for nanomedicine. To be suitable for such application, they need to be small, stable in aqueous media and sometimes fluorescent for bioimaging. We report herein, the facile synthesis of fluorescent, small (below 200 nm), water-soluble and water-stable MIP capable of specific and selective recognition of their target epitope (small part of a protein). To synthesize these materials, we used dithiocarbamate-based photoiniferter polymerization in water. The use of a rhodamine-based monomer makes the resulting polymers fluorescent. Isothermal titration calorimetry (ITC) is used to determine the affinity as well as the selectivity of the MIP for its imprinted epitope, according to the significant differences observed when comparing the binding enthalpy of the original epitope with that of other peptides. The toxicity of the nanoparticles is also tested in two breast cancer cell lines to show the possible use of these particle for future in vivo applications. The materials demonstrated a high specificity and selectivity for the imprinted epitope, with a Kd value comparable with the affinity values of antibodies. The synthesized MIP are not toxic, which makes them suitable for nanomedicine.

4.
Soft Matter ; 19(3): 378-393, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562421

RESUMO

Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and ß-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The ß-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.


Assuntos
Hidrogéis , Tensoativos , Hidrogéis/química , Conformação Proteica em Folha beta , Peso Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Micelas , Glicolipídeos
5.
Phys Rev E ; 102(5-1): 052703, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327168

RESUMO

In this article we show how spherical nanoparticles (NPs) imposing planar anchoring can strongly impact the viscoelastic, dielectric, and electro-optical properties of a nematic liquid crystal when they are not aggregated. We also demonstrate that when the NPs are magnetic, most nematic properties are more impacted than when they are nonmagnetic. With magnetic NPs a molecular disorder is induced that decreases the nematic order parameter, this decrease impacting the values of elastic constants, viscosity, and response time. The impact on 5CB liquid crystal (LC) has been investigated with spherical nanoparticles (NPs) of identical size around 6 nm, magnetic (γFe_{2}O_{3}), and nonmagnetic (CeO_{2}) ones that are both surface functionalized by poly(aminopropylmethylsiloxane-b-dimethylsiloxane) (PAPMS-b-PDMS) block copolymer ligands to promote planar anchoring. In the presence of nonmagnetic NPs, despite an almost constant nematic order parameter, a significant decrease of elastic constants (25.4%), viscosity (22%), and response time (23%) is measured. It suggests a dilution effect for the intermolecular interactions in the presence of NPs. This hypothesis is supported by the observation of an enhanced decrease of the same nematic parameters in the presence of magnetic NPs that can be fully explained by the corresponding order parameter decrease. This finally leads to a remarkable decrease of the splay elastic constant by 51% in the presence of magnetic NPs. The decrease of the nematic order parameter by 18% in the presence of magnetic NPs demonstrates that the NP magnetic moments are only weakly coupled to the nematic director and consequently only induce a disorder in the composite system. A significant influence of the expected large LC structural modifications in the presence of magnetic NPs is, however, shown by a particularly large increase of the diffusion coefficient 43% and large decrease of the dielectric anisotropy (43%). We believe that the observed impact of NPs with planar anchoring on nematic properties could be extended to most spherical NPs if their aggregation can be avoided. In particular, the difference between magnetic and nonmagnetic NPs could be extended to ferroelectric and nonferroelectric NPs.

6.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911745

RESUMO

The remote actuation of cellular processes such as migration or neuronal outgrowth is a challenge for future therapeutic applications in regenerative medicine. Among the different methods that have been proposed, the use of magnetic nanoparticles appears to be promising, since magnetic fields can act at a distance without interactions with the surrounding biological system. To control biological processes at a subcellular spatial resolution, magnetic nanoparticles can be used either to induce biochemical reactions locally or to apply forces on different elements of the cell. Here, we show that cell migration and neurite outgrowth can be directed by the forces produced by a switchable parallelized array of micro-magnetic pillars, following the passive uptake of nanoparticles. Using live cell imaging, we first demonstrate that adherent cell migration can be biased toward magnetic pillars and that cells can be reversibly trapped onto these pillars. Second, using differentiated neuronal cells we were able to induce events of neurite outgrowth in the direction of the pillars without impending cell viability. Our results show that the range of forces applied needs to be adapted precisely to the cellular process under consideration. We propose that cellular actuation is the result of the force on the plasma membrane caused by magnetically filled endo-compartments, which exert a pulling force on the cell periphery.


Assuntos
Movimento Celular/efeitos dos fármacos , Magnetismo/métodos , Nanopartículas de Magnetita/uso terapêutico , Espaço Intracelular/fisiologia , Campos Magnéticos , Nanopartículas de Magnetita/análise , Fenômenos Mecânicos , Crescimento Neuronal/efeitos dos fármacos , Fenômenos Físicos , Medicina Regenerativa/métodos
7.
Nanomaterials (Basel) ; 10(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847105

RESUMO

We present a 1H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter dTEM = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes. A full structural, morpho-dimensional and magnetic characterization was performed by means of Transmission Electron Microscopy, Atomic Force Microscopy and DC magnetometry. The magnetization curves showed that the investigated nanoparticles displayed a different approach to the saturation depending on the coatings, the less steep ones being those of the two samples coated with P(MAA-stat-MAPEG), suggesting the possibility of slightly different local magnetic disorders induced by the presence of the various polyelectrolytes on the particles' surface. For each series, 1H NMR relaxivities were found to depend very slightly on the surface coating. We observed a higher transverse nuclear relaxivity, r2, at all investigated frequencies (10 kHz ≤ νL ≤ 60 MHz) for the larger diameter series, and a very different frequency behavior for the longitudinal nuclear relaxivity, r1, between the two series. In particular, the first one (dTEM = 17 nm) displayed an anomalous increase of r1 toward the lowest frequencies, possibly due to high magnetic anisotropy together with spin disorder effects. The other series (dTEM = 8 nm) displayed a r1 vs. νL behavior that can be described by the Roch's heuristic model. The fitting procedure provided the distance of the minimum approach and the value of the Néel reversal time (τ ≈ 3.5 ÷ 3.9·10-9 s) at room temperature, confirming the superparamagnetic nature of these compounds.

8.
Sci Rep ; 10(1): 22452, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33384447

RESUMO

The axon regeneration of neurons in the brain can be enhanced by activating intracellular signaling pathways such as those triggered by the membrane-anchored Rat sarcoma (RAS) proto-oncogene. Here we demonstrate the induction of neurite growth by expressing tagged permanently active Harvey-RAS protein or the RAS-activating catalytic domain of the guanine nucleotide exchange factor (SOS1cat), in secondary dopaminergic cells. Due to the tag, the expressed fusion protein is captured by functionalized magnetic nanoparticles in the cytoplasm of the cell. We use magnetic tips for remote translocation of the SOS1cat-loaded magnetic nanoparticles from the cytoplasm towards the inner face of the plasma membrane where the endogenous Harvey-RAS protein is located. Furthermore, we show the magnetic transport of SOS1cat-bound nanoparticles from the cytoplasm into the neurite until they accumulate at its tip on a time scale of minutes. In order to scale-up from single cells, we show the cytoplasmic delivery of the magnetic nanoparticles into large numbers of cells without changing the cellular response to nerve growth factor. These results will serve as an initial step to develop tools for refining cell replacement therapies based on grafted human induced dopaminergic neurons loaded with functionalized magnetic nanoparticles in Parkinson model systems.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Nanopartículas de Magnetita , Regeneração Nervosa , Neuritos/metabolismo , Proteína SOS1/metabolismo , Biomarcadores , Linhagem Celular , Imunofluorescência , Expressão Gênica , Vetores Genéticos/genética , Humanos , Modelos Biológicos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/genética
9.
J Funct Biomater ; 10(3)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315182

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity. Towards overcoming this general limitation in guided neuronal regeneration, we develop here magnetic nanoparticles functionalized with proteins involved in the regulation of axonal growth. We show covalent binding of constitutive active human rat sarcoma (RAS) proteins or RAS guanine nucleotide exchange factor catalytic domain of son of sevenless (SOS) by fluorescence correlation spectroscopy and multiangle light scattering as well as the characterization of exchange factor activity. Human dopaminergic neurons were differentiated from neural precursor cells and characterized by electrophysiological and immune histochemical methods. Furthermore, we demonstrate magnetic translocation of cytoplasmic γ-Fe2O3@SiO2 core-shell nanoparticles into the neurite extensions of induced human neurons. Altogether, we developed tools towards remote control of directed neurite growth in human dopaminergic neurons. These results may have relevance for future therapeutic approaches of cell replacement therapy in Parkinson's disease.

10.
Langmuir ; 35(28): 9133-9138, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31144817

RESUMO

Among the large variety of microfluidic platforms, surface devices are a world apart. Electrowetting systems are used to control the displacement of droplets among predetermined pathways. More confidential, superhydrophobic surfaces are more and more described as new elements to guide spherical droplet reactors. As such, they can exhibit confinement properties analogous to channel-based microfluidics. In this article, we describe a new strategy to use superhydrophobic surfaces as a permanently tilted microfluidic platform, on which droplets containing iron oxide nanoparticles are guided with permanent magnets. These droplets are fed with water through a capillary tube until their weight exceeds the magnetic field force. Thus, the volume at which the droplet rolls off the surface is only governed by the initial quantity of magnetic nanoparticles and the tilting angle of the surface. This phenomenon provides a strategy for droplet dilution in a simple and reproducible manner, which is not that easy in microchannels, and a key advantage of open systems. As a proof of concept, we used this platform to prepare magnetic filaments by a salting-out process already described in large batches. By reducing salt concentration on the platform, we are able to control the electrostatic attractive interactions between iron oxide nanoparticles coated with poly(acrylic acid) and a positively charged polyelectrolyte [poly(diallyldimethylammonium chloride)]. The formation of nanostructured filaments was conducted in 2 min while more than 30 min was required for dialysis. Our results also illustrate the power of microfluidic reaction processes because such magnetic filaments could not be obtained through direct batch dilution because of mixing issues. Such microfluidic platforms could be useful for the efficient and simple dilution of systems where reactivity is controlled by concentration.

11.
Adv Drug Deliv Rev ; 138: 233-246, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414493

RESUMO

Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect. This magneto-thermal effect can be exploited as a relevant external stimulus to temporally and spatially trigger drug release. In this review, we focus on recent advances in magnetic hyperthermia. Indirect experimental proofs of the local temperature increase are first discussed leading to a good estimation of the temperature at the surface (from 0.5 to 6 nm) of superparamagnetic NPs. Then we highlight recent studies illustrating the hot-spot effect for drug-release. Finally, we present another recent strategy to enhance the efficacity of thermal treatment by combining photothermal therapy with magnetic hyperthermia mediated by magneto-plasmonic nanoplatforms.


Assuntos
Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Campos Magnéticos , Nanopartículas/administração & dosagem , Animais , Temperatura Alta , Humanos
12.
Nanomaterials (Basel) ; 8(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340389

RESUMO

Herein, original magnetic drug delivery nanomaterials for cancer therapy are developed and compared, with the purpose to show active control over drug release by using an alternative magnetic field (AMF). The rationale is to combine polymers and superparamagnetic nanoparticles to trigger such drug release under AMF. Two magnetic nanosystems are thus presented: magnetic nanogels made of thermosensitive and biocompatible polymers and core-shell nanoparticles with a magnetic core and a molecularly imprinted polymer as shell. Both encapsulate doxorubicin (DOX) and the DOX controlled release was investigated in vitro and in cells under AMF excitation. It confirms that the local heat profile at the vicinity of the iron oxide core can be used for the DOX controlled release. It also shows that both nanosystems help delivering more DOX inside the cells compared to internalization of free DOX. Finally, the DOX intracellular release could be remotely triggered under AMF, in athermal conditions, thus enhancing DOX cytotoxicity.

13.
J Colloid Interface Sci ; 516: 248-253, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408111

RESUMO

HYPOTHESIS: Ionic liquids (ILs) are extremely concentrated electrolyte solutions. The ubiquitous presence of ions induces specific behaviors for chemical reactions compared to reactions in water solutions. This is also the case for the stability of colloidal dispersions, for which the DLVO model cannot be applied as the ionic strength is out of the model range. In a previous work, in the protic IL ethylammonium nitrate (doi: https://doi.org//10.1016/j.jcis.2015.04.059), we observed an unexpected influence of the pH on the stability of dispersion of maghemite nanoparticles coated with poly(acrylic acid) (pAA). EXPERIMENTS: To clarify and generalize these observations, we investigated here the pH response of the dispersion in a second protic ionic liquid with a different acid-base nature, diethylethanolammonium trifluoromethanesulfonate. pH titrations of the dispersions were achieved with an IS-FET electrode and the associated thermodynamic constants determined. The colloid structural properties were examined by small angle X-ray scattering. FINDINGS: Under acidic or mildly basic condition, a stable dispersion was obtained, i.e., when the degree of dissociation of pAA, α, was α < 0.1 or α > 0.7. Dispersions form quite dense but reversible aggregates in the intermediate α range. A model for the solvation layer around the particles is proposed and generalizes the former findings.

14.
ACS Nano ; 11(7): 6728-6738, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28640628

RESUMO

We show that the use of oriented linear arrays of smectic A defects, the so-called smectic oily streaks, enables the orientation of gold nanorods (GNRs) for a large range of GNR diameters, ranging from 7 to 48 nm, and for various ligands. For the small GNRs it enables oriented end-to-end small chains of GNRs when the density is increased from around 2 GNRs/µm2 to around 6 GNRs/µm2. We have characterized the orientation of single GNRs by spectrophotometry and two-photon luminescence (TPL). A strongly anisotropic absorption of the composites and an on-off switching of GNR luminescence, both controlled by incident light polarization, are observed, revealing an orientation of the GNRs mostly parallel to the oily streaks. A more favorable trapping of GNRs by smectic dislocations with respect to ribbon-like defects is thus demonstrated. The dislocations appear to be localized at a specific localization, namely, the summit of rotating grain boundaries. Combining plasmonic absorption measurements, TPL measurements, and simulation of the plasmonic absorption, we show that the end-to-end GNR chains are both dimers and trimers, all parallel to each other, with a small gap between the coupled GNRs, on the order of 1.5 nm, thus associated with a large red-shift of 110 nm of the longitudinal plasmonic mode. A motion of the GNRs along the dislocations appears as a necessary ingredient for the formation of end-to-end GNR chains, the gap value being driven by the balance between the attracting van der Waals interactions and the steric repulsion between the GNRs and leading to interdigitation of the neighboring ligands. We thus obtain electromagnetic coupling of nanorods controlled by light polarization.

15.
Phys Rev E ; 96(1-1): 012706, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347110

RESUMO

A long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic field of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon is rarely measured to be large, due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal: the pentylcyanobiphenyl (5CB), doped with 6 nm diameter magnetic and nonmagnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparticle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover, the magnetic Fredericksz threshold exhibits nonmonotonic behavior as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticles than those introduced when the concentration is increased above c=0.05 weight fraction (volume fraction 3.5×10^{-2}). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and nonmagnetic nanoparticles. For nonmagnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules.

16.
J Colloid Interface Sci ; 479: 139-149, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27388127

RESUMO

High-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast. The magnetic load of the resulting nanoassemblies is evaluated using magnetic sedimentation and more originally electrospray mass spectrometry. The role of the stabilizing agents (citrate versus polyacrylate anions) revealed to be crucial regarding the cohesion of the resulting high-performance magneto-fluorescent nanoassemblies, which questions their use after cell internalization as nanocarriers or imaging agents for reliable correlative light and electron microcopy.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Neoplasias/patologia , Humanos , Imageamento por Ressonância Magnética , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
17.
Nat Commun ; 6: 10139, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634987

RESUMO

Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

18.
J Colloid Interface Sci ; 454: 105-11, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26005797

RESUMO

HYPOTHESIS: Getting colloidally stable dispersions of nanoparticles in ionic liquids is a challenging task. Indeed, long-range electrostatic repulsions often involved in molecular solvents are screened in ionic liquids and cannot counterbalance the interparticle attractions. Using a polyelectrolyte coating should provide a good stabilisation of the nanoparticles. Investigating the role of the polyelectrolyte charge on the dispersion state should yield to a better comprehension of the stabilisation mechanisms. EXPERIMENTS: Polyacrylate coated maghemite nanoparticles were transferred from water to ethylammonium nitrate, a protic ionic liquid, for various polymer chain length and nanoparticles size. Titrations of coated nanoparticles and of free polymer chains were performed in water and in ethylammonium nitrate. The dispersion state of the nanoparticles was monitored at different pH by small-angle X-ray scattering. FINDINGS: Polyacrylate coating stabilised the nanoparticles in ethylammonium nitrate. However, reversible aggregation with the pH was observed. Surprisingly, this control was not directly related to the surface charge like in water but to the solvent quality for the polyelectrolyte. This study is the first report on the use of the pH to tune the dispersion state of nanoparticles in an ionic liquid. It provides a better understanding of the mechanisms responsible for colloidal stability in ionic liquids.

19.
J Mater Chem B ; 2(44): 7747-7755, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261911

RESUMO

Innovative nanostructures made of a high payload of fluorophores and superparamagnetic nanoparticles (NPs) have simply been fabricated upon self-assembling in a two-step process. The resulting hybrid supraparticles displayed a dense shell of iron oxide nanoparticles tightly attached through an appropriate polyelectrolyte to a highly emissive non-doped nanocore made of more than 105 small organic molecules. Cooperative magnetic dipole interactions arose due to the closely packed magnetic NPs at the nanoarchitecture surface, causing enhanced NMR transverse relaxivity. Large in vivo MRI T2 contrast was thus obtained with unusually diluted solutions after intravenous injection in small rodents. Two-photon excited fluorescence imaging could be performed, achieving unprecedented location resolution for agents combining both magnetic nanoparticles and fluorescence properties. Finally, TEM imaging of the sectioned mouse tissue succeeded in isolating the core-shell structures, which represents the first image of intact complex magnetic and fluorescent nanoassemblies upon in vivo injection. Such highly cohesive dual nanoarchitectures should open great horizons toward the assessment with high spatial resolution of the drug or labeled stem cell biodistribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...