Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Sci Rep ; 14(1): 1187, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216639

RESUMO

Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.


Assuntos
Doença de Chagas , MicroRNA Circulante , Cardiopatias , MicroRNAs , Humanos , RNA-Seq , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Doença de Chagas/diagnóstico , Doença de Chagas/genética
2.
Carbohydr Polym ; 318: 121094, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479429

RESUMO

Lipopolysaccharides (LPS) are major players in bacterial infection through the recognition by Toll-like receptor 4 (TLR4). The LPS chemical structure, including the oligosaccharide core and the lipid A moiety, can be strongly influenced by adaptation and modulated to assure bacteria protection, evade immune surveillance, or reduce host immune responses. Deep structural understanding of TLRs signaling is essential for the modulation of the innate immune system in sepsis control and inflammation, during bacterial infection. To advance this knowledge, we have employed computational techniques to characterize the TLR4 molecular recognition of atypical LPSs from different opportunistic members of α2-Proteobacteria, including Brucella melitensis, Ochrobactrum anthropi, and Ochrobactrum intermedium, with diverse immunostimulatory activities. We contribute to unraveling the role of uncommon lipid A chemical features such as bearing very long-chain fatty acid chains, whose presence has been rarely reported, on modulating the proper heterodimerization of the TLR4 receptor complex. Moreover, we further evaluated the influence of the different oligosaccharide cores, including sugar composition and net charge, on TLR4 activation. Our studies contribute to elucidating, from the molecular and biological perspectives, the impact of the α2-Proteobacteria LPS cores and the chemical structure of the atypical lipid A for immune system evasion in opportunistic bacteria.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/química , Receptor 4 Toll-Like , Lipídeo A/química , Proteobactérias , Evasão da Resposta Imune , Bactérias , Oligossacarídeos
3.
Front Immunol ; 14: 1157263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081876

RESUMO

Introduction: The rapid development of vaccines to prevent COVID-19 has raised the need to compare the capacity of different vaccines in terms of developing a protective humoral response. Previous studies have shown inconsistent results in this area, highlighting the importance of further research to evaluate the efficacy of different vaccines. Methods: This study utilized a highly sensitive and reliable flow cytometry method to measure the titers of IgG1 isotype antibodies in the blood of healthy volunteers after receiving one or two doses of various vaccines administered in Spain. The method was also used to simultaneously measure the reactivity of antibodies to the S protein of the original Wuhan strain and variants B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.617.1 (Kappa). Results: Significant differences were observed in the titer of anti-S antibodies produced after a first dose of the vaccines ChAdOx1 nCov-19/AstraZeneca, mRNA-1273/Moderna, BNT162b2/Pfizer-BioNTech, and Ad26.COV.S/Janssen. Furthermore, a relative reduction in the reactivity of the sera with the Alpha, Delta, and Kappa variants, compared to the Wuhan strain, was observed after the second boosting immunization. Discussion: The findings of this study provide a comparison of different vaccines in terms of anti-S antibody generation and cast doubts on the convenience of repeated immunization with the same S protein sequence. The multiplexed capacity of the flow cytometry method utilized in this study allowed for a comprehensive evaluation of the efficacy of various vaccines in generating a protective humoral response. Future research could focus on the implications of these findings for the development of effective COVID-19 vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Glicoproteína da Espícula de Coronavírus , Vacinação , Anticorpos
4.
Front Cell Dev Biol ; 11: 1138571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936692

RESUMO

Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.

5.
Front Immunol ; 14: 1105237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936972

RESUMO

Background: Children are less susceptible than adults to symptomatic COVID-19 infection, but very few studies addressed their underlying cause. Moreover, very few studies analyzed why children highly exposed to the virus remain uninfected. Methods: We analyzed the serum levels of ACE2, angiotensin II, anti-spike and anti-N antibodies, cytokine profiles, and virus neutralization in a cohort of children at high risk of viral exposure, cohabiting with infected close relatives during the lockdown in Spain. Results: We analyzed 40 children who were highly exposed to the virus since they lived with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected relatives during the lockdown for several months without taking preventive measures. Of those, 26 reported mild or very mild symptoms. The induced immune response to the virus was analyzed 3 months after the household infection. Surprisingly, only 15 children had IgG anti-S (IgG+) determined by a sensitive method indicative of a past infection. The rest, negative for IgG anti-N or S in various tests, could be further subdivided, according to IgM antibodies, into those having IgM anti-S and IgM anti-N (IgG-IgMhigh) and those having only IgM anti-N (IgG-IgMlow). Interestingly, those two subgroups of children with IgM antibodies have strikingly different patterns of cytokines. The IgMhigh group had significantly higher IFN-α2 and IFN-γ levels as well as IL-10 and GM-CSF than the IgMlow group. In contrast, the IgMlow group had low levels of ACE2 in the serum. Both groups have a weaker but significant capacity to neutralize the virus in the serum than the IgG+ group. Two children were negative in all immunological antibody tests. Conclusions: A significant proportion of children highly exposed to SARS-CoV-2 did not develop a classical adaptive immune response, defined by the production of IgG, despite being in close contact with infected relatives. A large proportion of those children show immunological signs compatible with innate immune responses (as secretion of natural antibodies and cytokines), and others displayed very low levels of the viral receptor ACE2 that may have protected them from the virus spreading in the body despite high and constant viral exposure.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Enzima de Conversão de Angiotensina 2 , Anticorpos Antivirais , Controle de Doenças Transmissíveis , COVID-19/imunologia , Citocinas , Imunidade , Imunoglobulina G , Imunoglobulina M
6.
Aging Cell ; 22(3): e13771, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36704839

RESUMO

The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.


Assuntos
COVID-19 , Quercetina , Camundongos , Humanos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , SARS-CoV-2 , Senescência Celular , Senoterapia , Pandemias
7.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555322

RESUMO

Understanding the signaling cascades that govern adipocyte metabolism and differentiation is necessary for the development of therapies for obesity. Toll-like receptors (TLRs) are key mediators in adipogenesis, but their specific role is not completely understood. In this study, siRNA knockdown of Tlr2 in 3T3-L1 cells allowed them to differentiate more efficiently into adipocytes, whereas the opposite was observed for the knockdown of Tlr4. At the same time, we show that TLR2 knock-out mice spontaneously developed mature-onset obesity and insulin resistance. Besides a higher incidence of hyperplasia and hypertrophy in white adipose tissue (WAT), we found a significantly increased number of adipocyte precursor cells in TLR2-/- mice compared to TLR4-/- mice. Interestingly, genetic inactivation of Tlr4 in TLR2-/- mice reverted their increased adiposity, insulin resistance, and restored normal levels of adipocyte precursor cells. These findings provide evidence that TLR2 and TLR4 play opposing roles in WAT homeostasis and point to the existence of cross-regulation among TLR2 and TLR4 during adipocyte differentiation both in vitro and in vivo.


Assuntos
Resistência à Insulina , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Resistência à Insulina/genética , Obesidade/metabolismo , Diferenciação Celular/genética , Adipócitos/metabolismo , Adipogenia/genética , Camundongos Knockout , Células 3T3-L1
8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362060

RESUMO

Cyclooxygenase (COX) is the key enzyme in prostanoid synthesis from arachidonic acid (AA). Two isoforms, named COX-1 and COX-2, are expressed in mammalian tissues. The expression of COX-2 isoform is induced by several stimuli including cytokines and mitogens, and this induction is inhibited by glucocorticoids (GCs). We have previously shown that the transcriptional induction of COX-2 occurs early after T cell receptor (TCR) triggering, suggesting functional implications of this enzyme in T cell activation. Here, we show that dexamethasone (Dex) inhibits nuclear factor of activated T cells (NFAT)-mediated COX-2 transcriptional induction upon T cell activation. This effect is dependent on the presence of the GC receptor (GR), but independent of a functional DNA binding domain, as the activation-deficient GRLS7 mutant was as effective as the wild-type GR in the repression of NFAT-dependent transcription. Dex treatment did not disturb NFAT dephosphorylation, but interfered with activation mediated by the N-terminal transactivation domain (TAD) of NFAT, thus pointing to a negative cross-talk between GR and NFAT at the nuclear level. These results unveil the ability of GCs to interfere with NFAT activation and the induction of pro-inflammatory genes such as COX-2, and explain some of their immunomodulatory properties in activated human T cells.


Assuntos
Ciclo-Oxigenase 2 , Receptores de Glucocorticoides , Linfócitos T , Humanos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Ativação Linfocitária , Mamíferos/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T/metabolismo , Ativação Transcricional , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
9.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140427

RESUMO

The innate immunity toll-like receptor 4 (TLR4) system is a receptor of paramount importance as a therapeutic target. Virtual screening following a "computer-aided drug repurposing" approach was applied to the discovery of novel TLR4 modulators with a non-lipopolysaccharide-like structure. We screened almost 29,000 approved drugs and drug-like molecules from commercial, public, and in-house academia chemical libraries and, after biological assays, identified several compounds with TLR4 antagonist activity. Our computational protocol showed to be a robust approach for the identification of hits with drug-like scaffolds as possible inhibitors of the TLR4 innate immune pathways. Our collaborative work broadens the chemical diversity for inspiration of new classes of TLR4 modulators.

10.
Sci Rep ; 12(1): 10956, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768632

RESUMO

Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.


Assuntos
Espermatócitos , Testículo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Meiose , Camundongos , Camundongos Knockout , Espermatócitos/metabolismo , Espermatogênese , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Immunol ; 13: 836516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401548

RESUMO

Background: COVID-19 can generate a broad spectrum of severity and symptoms. Many studies analysed the determinants of severity but not among some types of symptoms. More importantly, very few studies analysed patients highly exposed to the virus that nonetheless remain uninfected. Methods: We analysed serum levels of ACE2, Angiotensin II and anti-Spike antibodies in 2 different cohorts at high risk of viral exposure, highly exposed but uninfected subjects, either high risk health care workers or persons cohabiting with infected close relatives and seropositive patients with symptoms. We tested the ability of the sera of these subjects to neutralize lentivirus pseudotyped with the Spike-protein. Results: We found that the serum levels of ACE2 are significantly higher in highly exposed but uninfected subjects. Moreover, sera from this seronegative persons can neutralize SARS-CoV-2 infection in cellular assays more strongly that sera from non-exposed negative controls eventhough they do not have anti-CoV-2 IgG antibodies suggesting that high levels of ACE2 in serum may somewhat protect against an active infection without generating a conventional antibody response. Finally, we show that among patients with symptoms, ACE2 levels were significantly higher in infected patients who developed cutaneous as compared with respiratory symptoms and ACE2 was also higher in those with milder symptoms. Conclusions: These findings suggest that soluble ACE2 could be used as a potential biomarker to predict SARS-CoV-2 infection risk and to discriminate COVID-19 disease subtypes.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
12.
Cell Mol Life Sci ; 79(1): 61, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-34999972

RESUMO

Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Fígado/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Transcitose/fisiologia
13.
Mol Oncol ; 16(9): 1876-1890, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34623757

RESUMO

Colorectal cancer (CRC) is a very common life-threatening malignancy. Transcription factor-like 5 (TCFL5) has been suggested to be involved in CRC. Here, we describe the expression of four alternative transcripts of TCFL5 and their relevance in CRC. Complete deletion of all isoforms drastically decreased pro-tumoural properties such as spheroids formation and in vivo tumour growth, although increased migration in CRC cell lines. Overexpression of the two main isoforms, TCFL5_E8 and CHA, had opposite effects: TCFL5_E8 reduced proliferation and spheroids formation, while CHA increased them. TCFL5_E8 reduced in vivo tumour formation, while CHA had no effect. In addition, TCFL5_E8 and CHA have different roles in the regulation of the pluripotency-related genes SOX2 and KLF4. Both isoforms bind directly to their promoters; however, TCFL5_E8 induced SOX2 and reduced KLF4 mRNA levels, whereas CHA did the opposite. Together, our results show that TCFL5 plays an important role in the development of CRC, being however isoform-specific. This work also points to the need to analyse separately TCFL5 isoforms in cancer, due to their different and opposite functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Colorretais , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Fator 4 Semelhante a Kruppel/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
14.
Microorganisms ; 9(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835334

RESUMO

Chagas disease principally affects Latin-American people, but it currently has worldwide distribution due to migration. Death among those with Chagas disease can occur suddenly and without warning, even in those who may not have evidence of clinical or structural cardiac disease and who are younger than 60 years old. HCN4 channels, one of the principal elements responsible for pacemaker currents, are associated with cardiac fetal reprogramming and supraventricular and ventricular arrhythmias, but their role in chagasic arrhythmias is not clear. We found that a single-dose administration of ivabradine, which blocks HCN4, caused QTc and QRS enlargement and an increase in P-wave amplitude and was associated with ventricular and supraventricular arrhythmias in mice challenged with isoproterenol, a chronotropic/ionotropic positive agent. Continuous treatment with ivabradine did not alter the QTc interval, but P-wave morphology was deeply modified, generating supraventricular arrhythmias. In addition, we found that repolarization parameters improved with ivabradine treatment. These effects could have been caused by the high HCN4 expression observed in auricular and ventricular tissue in infected mice. Thus, we suggest, for the first time, that molecular remodeling by overexpression of HCN4 channels may be related to supraventricular arrhythmias in acute Chagas disease, causing ivabradine over-response. Thus, ivabradine treatment should be administered with caution, while HCN4 overexpression may be an indicator of heart failure and/or sudden death risk.

15.
Front Cell Infect Microbiol ; 11: 737364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513737

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.


Assuntos
Doença de Chagas , Células Supressoras Mieloides , Trypanosoma cruzi , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Trypanosoma cruzi/metabolismo
16.
Front Immunol ; 12: 660065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234775

RESUMO

Toll-like receptors (TLRs) play a crucial role in the recognition of pathogen-derived components as a first line of defense against infections. It has been suggested that depending on the nature of the pathogens, TLRs activation induce a distinct cytokine profile that may contribute to the polarization of the acquired immune response. Here, we investigated the early MAPK signaling activation via TLR4 and TLR2 receptors and its impact in differential cytokine profile by macrophages. We found that TLR2 ligands activated MAPKs p38 and ERK earlier compared to the TLR4 ligand LPS in macrophages. Higher IL-10/IL-12 and IL-10/TNF-α ratios were also observed at later time points in response to TLR2 ligands compared to LPS. The results also indicate an earlier activation of the phosphatase MKP-1 and that MKP-1 KO macrophages show a prolongation in p38 phosphorylation in response to TLR2 stimulation. Furthermore, p38 is critical for IL-10 expression in response to TLR2 ligands, which triggers the macrophage change to a M2 and regulatory phenotype in contrast to the M1 phenotype induced by TLR4 activation. Therefore, the early TLR2-mediated p38 induction contributes for the high IL-10 production, likely as a virulence strategy to suppress host Th1 response against certain types of pathogens.


Assuntos
Fosfatase 1 de Especificidade Dupla/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Receptor 2 Toll-Like/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Diglicerídeos/farmacologia , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Ativação Enzimática/imunologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Front Cell Infect Microbiol ; 11: 672448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268138

RESUMO

The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together into a huge complex network. These structures present species-specific sizes, from 20 to 40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that produce the maturation of the maxicircle-encoded transcripts. The knowledge about this mitochondrial genome is especially relevant since the expression of nuclear and mitochondrial genes involved in oxidative phosphorylation must be coordinated. In Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of energy, and its use as a phylogenetic marker due to its high conservation among strains. Therefore, this study aimed to assemble, annotate, and analyze the complete repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA sequencing. We assembled and annotated the complete maxicircle sequence of the Y and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is the longest assembled to date, and is composed of 21 genes, most of them conserved among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles show a conserved structure around 1.4 Kb, with four highly conserved regions and other four hypervariable regions interspersed between them. However, our results suggest that the parasite minicircles display several sizes and numbers of conserved and hypervariable regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in the three conserved sequence blocks of the conserved regions that play a key role in the minicircle replication. Our results using sequencing technologies of second and third-generation indicate that the different consensus sequences of the maxicircles and minicircles seem to be more complex than previously described indicating at least four different groups in T. cruzi minicircles.


Assuntos
Trypanosoma cruzi , Sequência de Bases , DNA de Cinetoplasto/genética , DNA Mitocondrial/genética , Filogenia , Trypanosoma cruzi/genética
18.
Front Immunol ; 12: 632304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953709

RESUMO

Cross-reactive vaccines recognize common molecular patterns in pathogens and are able to confer broad spectrum protection against different infections. Antigens common to pathogenic bacteria that induce broad immune responses, such as the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of the genera Listeria, Mycobacterium, or Streptococcus, whose sequences present more than 95% homology at the N-terminal GAPDH1-22 peptide, are putative candidates for universal vaccines. Here, we explore vaccine formulations based on dendritic cells (DC) loaded with two molecular forms of Listeria monocytogenes GAPDH (LM-GAPDH), such as mRNA carriers or recombinant proteins, and compare them with the same molecular forms of three other antigens used in experimental vaccines, listeriolysin O of Listeria monocytogeness, Ag85A of Mycobacterium marinum, and pneumolysin of Streptococcus pneumoniae. DC loaded with LM-GAPDH recombinant proteins proved to be the safest and most immunogenic vaccine vectors, followed by mRNA encoding LM-GAPDH conjugated to lipid carriers. In addition, macrophages lacked sufficient safety as vaccines for all LM-GAPDH molecular forms. The ability of DC loaded with LM-GAPDH recombinant proteins to induce non-specific DC activation explains their adjuvant potency and their capacity to trigger strong CD4+ and CD8+ T cell responses explains their high immunogenicity. Moreover, their capacity to confer protection in vaccinated mice against challenges with L. monocytogenes, M. marinum, or S. pneumoniae validated their efficiency as cross-reactive vaccines. Cross-protection appears to involve the induction of high percentages of GAPDH1-22 specific CD4+ and CD8+ T cells stained for intracellular IFN-γ, and significant levels of peptide-specific antibodies in vaccinated mice. We concluded that DC vaccines loaded with L. monocytogenes GAPDH recombinant proteins are cross-reactive vaccines that seem to be valuable tools in adult vaccination against Listeria, Mycobacterium, and Streptococcus taxonomic groups.


Assuntos
Vacinas Bacterianas/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Lipídeos/imunologia , Listeria/imunologia , Mycobacterium/imunologia , RNA Mensageiro/imunologia , Streptococcus/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteção Cruzada , Reações Cruzadas , Células Dendríticas/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Interferon gama/imunologia , Lipídeos/química , Listeria/enzimologia , Listeria/genética , Camundongos , RNA Mensageiro/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
19.
Vaccines (Basel) ; 9(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802959

RESUMO

Universal vaccines can be prepared with antigens common to different pathogens. In this regard, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a common virulence factor among pathogenic bacteria of the genera Listeria, Mycobacterium and Streptococcus. Their N-terminal 22 amino acid peptides, GAPDH-L1 (Listeria), GAPDH-M1 (Mycobacterium) and GAPDH-S1 (Streptococcus), share 95-98.55% sequence homology, biochemical and MHC binding abilities and, therefore, are good candidates for universal vaccine designs. Here, we used dendritic cells (DC) as vaccine platforms to test GAPDH epitopes that conferred protection against Listeria monocytogenes, Mycobacterium marinum or Streptococcus pneumoniae in our search of epitopes for universal vaccines. DC loaded with GAPDH-L1, GAPDH-M1 or GAPDH-S1 peptides show high immunogenicity measured by the cellular DTH responses in mice, lacked toxicity and were capable of cross-protection immunity against mice infections with each one of the pathogens. Vaccine efficiency correlated with high titers of anti-GAPDH-L1 antibodies in sera of vaccinated mice, a Th1 cytokine pattern and high frequencies of GAPDH-L1-specific CD4+ and CD8+ T cells and IFN-γ producers in the spleens. We concluded that GAPDH-L1 peptide was the best epitope for universal vaccines in the Listeria, Mycobacterium or Streptococcus taxonomic groups, whose pathogenic strains caused relevant morbidities in adults and especially in the elderly.

20.
Ann N Y Acad Sci ; 1497(1): 27-38, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682151

RESUMO

In Chagas disease (ChD) caused by Trypanosoma cruzi, new biomarkers to predict chronic cardiac pathology are urgently needed. Previous studies in chagasic patients with mild symptomatology showed that antibodies against the immunodominant R3 epitope of sCha, a fragment of the human basic helix-loop-helix transcription factor like 5, correlated with cardiac pathology. To validate sCha as a biomarker and to understand the origin of anti-sCha antibodies, we conducted a multicenter study with several cohorts of chagasic patients with severe cardiac symptomatology. We found that levels of antibodies against sCha discriminated the high risk of sudden death, indicating they could be useful for ChD prognosis. We investigated the origin of the antibodies and performed an alanine scan of the R3 epitope. We identified a minimal epitope MRQLD, and a BLAST search retrieved several T. cruzi antigens. Five of the hits had known or putative functions, of which phosphonopyruvate decarboxylase showed the highest cross-reactivity with sCha, confirming the role of molecular mimicry in the development of anti-sCha antibodies. Altogether, we demonstrate that the development of antibodies against sCha, which originated by molecular mimicry with T. cruzi antigens, could discriminate electrocardiographic alterations associated with a high risk of sudden death.


Assuntos
Autoanticorpos/imunologia , Cardiomiopatia Chagásica/etiologia , Cardiomiopatia Chagásica/metabolismo , Doença de Chagas/complicações , Doença de Chagas/imunologia , Morte Súbita/etiologia , Epitopos Imunodominantes/imunologia , Anticorpos Antiprotozoários/imunologia , Biomarcadores , Cardiomiopatia Chagásica/diagnóstico , Doença de Chagas/parasitologia , Doença Crônica , Reações Cruzadas , Suscetibilidade a Doenças , Humanos , Trypanosoma cruzi/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...