Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37467739

RESUMO

Objective.Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.Approach.In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.Main results.We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.Significance.These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Córtex Sensório-Motor , Humanos , Fala , Comunicação , Eletrocorticografia/métodos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 802-806, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085697

RESUMO

Completely locked-in patients suffer from paralysis affecting every muscle in their body, reducing their communication means to brain-computer interfaces (BCIs). State-of-the-art BCIs have a slow spelling rate, which inevitably places a burden on patients' quality of life. Novel techniques address this problem by following a bio-mimetic approach, which consists of decoding sensory-motor cortex (SMC) activity that underlies the movements of the vocal tract's articulators. As recording articulatory data in combination with neural recordings is often unfeasible, the goal of this study was to develop an acoustic-to-articulatory inversion (AAI) model, i.e. an algorithm that generates articulatory data (speech gestures) from acoustics. A fully convolutional neural network was trained to solve the AAI mapping, and was tested on an unseen acoustic set, recorded simultaneously with neural data. Representational similarity analysis was then used to assess the relationship between predicted gestures and neural responses. The network's predictions and targets were significantly correlated. Moreover, SMC neural activity was correlated to the vocal tract gestural dynamics. The present AAI model has the potential to further our understanding of the relationship between neural, gestural and acoustic signals and lay the foundations for the development of a bio-mimetic speech BCI. Clinical Relevance- This study investigates the relationship between articulatory gestures during speech and the underlying neural activity. The topic is central for development of brain-computer interfaces for severely paralysed individuals.


Assuntos
Gestos , Fala , Acústica , Inversão Cromossômica , Humanos , Idioma , Paralisia , Qualidade de Vida
3.
J Neural Eng ; 19(4)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35931055

RESUMO

Objective. Implanted brain-computer interfaces (BCIs) employ neural signals to control a computer and may offer an alternative communication channel for people with locked-in syndrome (LIS). Promising results have been obtained using signals from the sensorimotor (SM) area. However, in earlier work on home-use of an electrocorticography (ECoG)-based BCI by people with LIS, we detected differences in ECoG-BCI performance, which were related to differences in the modulation of low frequency band (LFB) power in the SM area. For future clinical implementation of ECoG-BCIs, it will be crucial to determine whether reliable performance can be predicted before electrode implantation. To assess if non-invasive scalp-electroencephalography (EEG) could serve such prediction, we here investigated if EEG can detect the characteristics observed in the LFB modulation of ECoG signals.Approach. We included three participants with LIS of the earlier study, and a control group of 20 healthy participants. All participants performed a Rest task, and a Movement task involving actual (healthy) or attempted (LIS) hand movements, while their EEG signals were recorded.Main results.Data of the Rest task was used to determine signal-to-noise ratio, which showed a similar range for LIS and healthy participants. Using data of the Movement task, we selected seven EEG electrodes that showed a consistent movement-related decrease in beta power (13-30 Hz) across healthy participants. Within the EEG recordings of this subset of electrodes of two LIS participants, we recognized the phenomena reported earlier for the LFB in their ECoG recordings. Specifically, strong movement-related beta band suppression was observed in one, but not the other, LIS participant, and movement-related alpha band (8-12 Hz) suppression was practically absent in both. Results of the third LIS participant were inconclusive due to technical issues with the EEG recordings.Significance. Together, these findings support a potential role for scalp EEG in the presurgical assessment of ECoG-BCI candidates.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Humanos , Movimento , Couro Cabeludo
4.
Sci Data ; 9(1): 91, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314718

RESUMO

Intracranial human recordings are a valuable and rare resource of information about the brain. Making such data publicly available not only helps tackle reproducibility issues in science, it helps make more use of these valuable data. This is especially true for data collected using naturalistic tasks. Here, we describe a dataset collected from a large group of human subjects while they watched a short audiovisual film. The dataset has several unique features. First, it includes a large amount of intracranial electroencephalography (iEEG) data (51 participants, age range of 5-55 years, who all performed the same task). Second, it includes functional magnetic resonance imaging (fMRI) recordings (30 participants, age range of 7-47) during the same task. Eighteen participants performed both iEEG and fMRI versions of the task, non-simultaneously. Third, the data were acquired using a rich audiovisual stimulus, for which we provide detailed speech and video annotations. This dataset can be used to study neural mechanisms of multimodal perception and language comprehension, and similarity of neural signals across brain recording modalities.


Assuntos
Eletrocorticografia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fala , Adulto Jovem
5.
J Neural Eng ; 18(5)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34607318

RESUMO

Objective.Electrocorticography (ECoG) based brain-computer interfaces (BCIs) can be used to restore communication in individuals with locked-in syndrome. In motor-based BCIs, the number of degrees-of-freedom, and thus the speed of the BCI, directly depends on the number of classes that can be discriminated from the neural activity in the sensorimotor cortex. When considering minimally invasive BCI implants, the size of the subdural ECoG implant must be minimized without compromising the number of degrees-of-freedom.Approach.Here we investigated if four hand gestures could be decoded using a single ECoG strip of four consecutive electrodes spaced 1 cm apart and compared the performance between a unipolar and a bipolar montage. For that we collected data of seven individuals with intractable epilepsy implanted with ECoG grids, covering the hand region of the sensorimotor cortex. Based on the implanted grids, we generated virtual ECoG strips and compared the decoding accuracy between (a) a single unipolar electrode (Unipolar Electrode), (b) a combination of four unipolar electrodes (Unipolar Strip), (c) a single bipolar pair (Bipolar Pair) and (d) a combination of six bipolar pairs (Bipolar Strip).Main results.We show that four hand gestures can be equally well decoded using 'Unipolar Strips' (mean 67.4 ± 11.7%), 'Bipolar Strips' (mean 66.6 ± 12.1%) and 'Bipolar Pairs' (mean 67.6 ± 9.4%), while 'Unipolar Electrodes' (61.6 ± 5.9%) performed significantly worse compared to 'Unipolar Strips' and 'Bipolar Pairs'.Significance.We conclude that a single bipolar pair is a potential candidate for minimally invasive motor-based BCIs and encourage the use of ECoG as a robust and reliable BCI platform for multi-class movement decoding.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Eletrodos , Eletrodos Implantados , Eletroencefalografia , Gestos , Mãos , Humanos
7.
Hum Brain Mapp ; 41(16): 4587-4609, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32744403

RESUMO

Various brain regions are implicated in speech processing, and the specific function of some of them is better understood than others. In particular, involvement of the dorsal precentral cortex (dPCC) in speech perception remains debated, and attribution of the function of this region is more or less restricted to motor processing. In this study, we investigated high-density intracranial responses to speech fragments of a feature film, aiming to determine whether dPCC is engaged in perception of continuous speech. Our findings show that dPCC exhibited preference to speech over other tested sounds. Moreover, the identified area was involved in tracking of speech auditory properties including speech spectral envelope, its rhythmic phrasal pattern and pitch contour. DPCC also showed the ability to filter out noise from the perceived speech. Comparing these results to data from motor experiments showed that the identified region had a distinct location in dPCC, anterior to the hand motor area and superior to the mouth articulator region. The present findings uncovered with high-density intracranial recordings help elucidate the functional specialization of PCC and demonstrate the unique role of its anterior dorsal region in continuous speech perception.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Córtex Motor/fisiologia , Percepção da Fala/fisiologia , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
8.
Sci Rep ; 10(1): 12077, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694561

RESUMO

Research on how the human brain extracts meaning from sensory input relies in principle on methodological reductionism. In the present study, we adopt a more holistic approach by modeling the cortical responses to semantic information that was extracted from the visual stream of a feature film, employing artificial neural network models. Advances in both computer vision and natural language processing were utilized to extract the semantic representations from the film by combining perceptual and linguistic information. We tested whether these representations were useful in studying the human brain data. To this end, we collected electrocorticography responses to a short movie from 37 subjects and fitted their cortical patterns across multiple regions using the semantic components extracted from film frames. We found that individual semantic components reflected fundamental semantic distinctions in the visual input, such as presence or absence of people, human movement, landscape scenes, human faces, etc. Moreover, each semantic component mapped onto a distinct functional cortical network involving high-level cognitive regions in occipitotemporal, frontal and parietal cortices. The present work demonstrates the potential of the data-driven methods from information processing fields to explain patterns of cortical responses, and contributes to the overall discussion about the encoding of high-level perceptual information in the human brain.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Vias Neurais , Algoritmos , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Rede Nervosa , Reconhecimento Visual de Modelos , Estimulação Luminosa , Reprodutibilidade dos Testes , Semântica
9.
PLoS Comput Biol ; 16(7): e1007992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614826

RESUMO

Understanding how the human brain processes auditory input remains a challenge. Traditionally, a distinction between lower- and higher-level sound features is made, but their definition depends on a specific theoretical framework and might not match the neural representation of sound. Here, we postulate that constructing a data-driven neural model of auditory perception, with a minimum of theoretical assumptions about the relevant sound features, could provide an alternative approach and possibly a better match to the neural responses. We collected electrocorticography recordings from six patients who watched a long-duration feature film. The raw movie soundtrack was used to train an artificial neural network model to predict the associated neural responses. The model achieved high prediction accuracy and generalized well to a second dataset, where new participants watched a different film. The extracted bottom-up features captured acoustic properties that were specific to the type of sound and were associated with various response latency profiles and distinct cortical distributions. Specifically, several features encoded speech-related acoustic properties with some features exhibiting shorter latency profiles (associated with responses in posterior perisylvian cortex) and others exhibiting longer latency profiles (associated with responses in anterior perisylvian cortex). Our results support and extend the current view on speech perception by demonstrating the presence of temporal hierarchies in the perisylvian cortex and involvement of cortical sites outside of this region during audiovisual speech perception.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Modelos Neurológicos , Redes Neurais de Computação , Som , Adolescente , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia , Feminino , Humanos , Masculino , Filmes Cinematográficos , Fonética , Processamento de Sinais Assistido por Computador , Fala/fisiologia , Percepção da Fala , Fatores de Tempo , Adulto Jovem
10.
Ann Neurol ; 88(3): 631-636, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548859

RESUMO

Facial expressions are important for intentional display of emotions in social interaction. For people with severe paralysis, the ability to display emotions intentionally can be impaired. Current brain-computer interfaces (BCIs) allow for linguistic communication but are cumbersome for expressing emotions. Here, we investigated the feasibility of a BCI to display emotions by decoding facial expressions. We used electrocorticographic recordings from the sensorimotor cortex of people with refractory epilepsy and classified five facial expressions, based on neural activity. The mean classification accuracy was 72%. This approach could be a promising avenue for development of BCI-based solutions for fast communication of emotions. ANN NEUROL 2020;88:631-636.


Assuntos
Interfaces Cérebro-Computador , Emoções , Expressão Facial , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino
11.
Front Neurosci ; 13: 1058, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680806

RESUMO

The sensorimotor cortex is a frequently targeted brain area for the development of Brain-Computer Interfaces (BCIs) for communication in people with severe paralysis and communication problems (locked-in syndrome; LIS). It is widely acknowledged that this area displays an increase in high-frequency band (HFB) power and a decrease in the power of the low frequency band (LFB) during movement of, for example, the hand. Upon termination of hand movement, activity in the LFB band typically shows a short increase (rebound). The ability to modulate the neural signal in the sensorimotor cortex by imagining or attempting to move is crucial for the implementation of sensorimotor BCI in people who are unable to execute movements. This may not always be self-evident, since the most common causes of LIS, amyotrophic lateral sclerosis (ALS) and brain stem stroke, are associated with significant damage to the brain, potentially affecting the generation of baseline neural activity in the sensorimotor cortex and the modulation thereof by imagined or attempted hand movement. In the Utrecht NeuroProsthesis (UNP) study, a participant with LIS caused by ALS and a participant with LIS due to brain stem stroke were implanted with a fully implantable BCI, including subdural electrocorticography (ECoG) electrodes over the sensorimotor area, with the purpose of achieving ECoG-BCI-based communication. We noted differences between these participants in the spectral power changes generated by attempted movement of the hand. To better understand the nature and origin of these differences, we compared the baseline spectral features and task-induced modulation of the neural signal of the LIS participants, with those of a group of able-bodied people with epilepsy who received a subchronic implant with ECoG electrodes for diagnostic purposes. Our data show that baseline LFB oscillatory components and changes generated in the LFB power of the sensorimotor cortex by (attempted) hand movement differ between participants, despite consistent HFB responses in this area. We conclude that the etiology of LIS may have significant effects on the LFB spectral components in the sensorimotor cortex, which is relevant for the development of communication-BCIs for this population.

12.
J Neural Eng ; 16(5): 056009, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31296796

RESUMO

OBJECTIVE: Brain-computer interfaces (BCIs) are being developed to restore reach and grasping movements of paralyzed individuals. Recent studies have shown that the kinetics of grasping movement, such as grasp force, can be successfully decoded from electrocorticography (ECoG) signals, and that the high-frequency band (HFB) power changes provide discriminative information that contribute to an accurate decoding of grasp force profiles. However, as the models used in these studies contained simultaneous information from multiple spectral features over multiple areas in the brain, it remains unclear what parameters of movement and force are encoded by the HFB signals and how these are represented temporally and spatially in the SMC. APPROACH: To investigate this, and to gain insight in the temporal dynamics of the HFB during grasping, we continuously modelled the ECoG HFB response recorded from nine individuals with epilepsy temporarily implanted with ECoG grids, who performed three different grasp force tasks. MAIN RESULTS: We show that a model based on the force onset and offset consistently provides a better fit to the HFB power responses when compared with a model based on the force magnitude, irrespective of electrode location. SIGNIFICANCE: Our results suggest that HFB power, although potentially useful for continuous decoding, is more closely related to the changes in movement. This finding may potentially contribute to the more natural decoding of grasping movement in neural prosthetics.


Assuntos
Eletrocorticografia/métodos , Epilepsia/fisiopatologia , Força da Mão/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adolescente , Adulto , Criança , Eletrocorticografia/instrumentação , Eletrodos Implantados , Epilepsia/diagnóstico , Feminino , Humanos , Masculino , Adulto Jovem
13.
J Neuropsychol ; 13(2): 289-304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29239527

RESUMO

The frontal cortex is heavily involved in oculomotor selection. Here, we investigated the neural correlates of eye movement selection during an antisaccade task in a young epileptic patient in whom the seizure focus included the frontal cortex and affected its function. Before resection surgery, the patient had difficulty in performing correct antisaccades towards the visual field contralateral to the seizure focus. Because the FEF is the only area in the human frontal cortex that is known to have a lateralized oculomotor function in the antisaccade task, this behavioural imbalance between the two visual fields suggests a disruption of FEF functioning by the nearby seizure focus. Electrocorticographic recordings at the seizure focus indeed showed that the seizure focus interfered with correct antisaccade performance. These results were in line with fMRI recordings revealing less task-related frontal activity for the hemisphere of the seizure focus, possibly reflecting diminished top-down engagement of the oculomotor system. Two months after removal of the compromised tissue, the seizures had disappeared, and antisaccade performance was the same for both visual hemifields. We conclude that a seizure focus in the frontal cortex can induce a dysfunction in the selection of eye movements, which is resolved after removal of interfering tissue.


Assuntos
Epilepsia/psicologia , Epilepsia/cirurgia , Movimentos Oculares , Lobo Frontal/cirurgia , Movimentos Sacádicos , Adolescente , Mapeamento Encefálico , Eletrocorticografia , Epilepsia/diagnóstico por imagem , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Desempenho Psicomotor , Campos Visuais
14.
Neuroimage ; 179: 225-234, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920373

RESUMO

Precise localization of electrodes is essential in the field of high-density (HD) electrocorticography (ECoG) brain signal analysis in order to accurately interpret the recorded activity in relation to functional anatomy. Current localization methods for subchronically implanted HD electrode grids involve post-operative imaging. However, for situations where post-operative imaging is not available, such as during acute measurements in awake surgery, electrode localization is complicated. Intra-operative photographs may be informative, but not for electrode grids positioned partially or fully under the skull. Here we present an automatic and unsupervised method to localize HD electrode grids that does not require post-operative imaging. The localization method, named GridLoc, is based on the hypothesis that the anatomical and vascular brain structures under the ECoG electrodes have an effect on the amplitude of the recorded ECoG signal. More specifically, we hypothesize that the spatial match between resting-state high-frequency band power (45-120 Hz) patterns over the grid and the anatomical features of the brain under the electrodes, such as the presence of sulci and larger blood vessels, can be used for adequate HD grid localization. We validate this hypothesis and compare the GridLoc results with electrode locations determined with post-operative imaging and/or photographs in 8 patients implanted with HD-ECoG grids. Locations agreed with an average difference of 1.94 ±â€¯0.11 mm, which is comparable to differences reported earlier between post-operative imaging and photograph methods. The results suggest that resting-state high-frequency band activity can be used for accurate localization of HD grid electrodes on a pre-operative MRI scan and that GridLoc provides a convenient alternative to methods that rely on post-operative imaging or intra-operative photographs.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Eletrocorticografia/instrumentação , Eletrodos Implantados , Processamento de Imagem Assistida por Computador/métodos , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-30931146

RESUMO

OBJECTIVE: High-frequency band (HFB) activity, measured using implanted sensors over the cortex, is increasingly considered as a feature for the study of brain function and the design of neural-implants, such as Brain-Computer Interfaces (BCIs). One common way of extracting these power signals is using a wavelet dictionary, which involves the selection of different temporal sampling and temporal smoothing parameters, such that the resulting HFB signal best represents the temporal features of the neuronal event of interest. Typically, the use of neuro-electrical signals for closed-loop BCI control requires a certain level of signal downsampling and smoothing in order to remove uncorrelated noise, optimize performance and provide fast feedback. However, a fixed setting of the sampling and smoothing parameters may lead to a suboptimal representation of the underlying neural responses and poor BCI control. This problem can be resolved with a systematic assessment of parameter settings. APPROACH: With classification of HFB power responses as performance measure, different combinations of temporal sampling and temporal smoothing values were applied to data from sensory and motor tasks recorded with high-density and standard clinical electrocorticography (ECoG) grids in 12 epilepsy patients. MAIN RESULTS: The results suggest that HFB ECoG responses are best performed with high sampling and subsequent smoothing. For the paradigms used in this study, optimal temporal sampling ranged from 29 Hz to 50 Hz. Regarding optimal smoothing, values were similar between tasks (0.1-0.9 s), except for executed complex hand gestures, for which two optimal possible smoothing windows were found (0.4-0.6 s and 0.9-2.7 s). SIGNIFICANCE: The range of optimal values indicates that parameter optimization depends on the functional paradigm and may be subject-specific. Our results advocate a methodical assessment of parameter settings for optimal decodability of ECoG signals.

16.
J Neurosci ; 37(33): 7906-7920, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28716965

RESUMO

Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain.SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Fonética , Percepção da Fala/fisiologia , Adolescente , Adulto , Eletrocorticografia/métodos , Eletrodos Implantados , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Fala/fisiologia , Adulto Jovem
17.
Neuroimage ; 147: 130-142, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926827

RESUMO

Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex (M1) as a source of signals for this purpose. Still, target areas for BCI are not confined to M1, and more brain regions may provide suitable BCI control signals. A logical candidate is the primary somatosensory cortex (S1), which not only shares similar somatotopic organization to M1, but also has been suggested to have a role beyond sensory feedback during movement execution. Here, we investigated whether four complex hand gestures, taken from the American sign language alphabet, can be decoded exclusively from S1 using both spatial and temporal information. For decoding, we used the signal recorded from a small patch of cortex with subdural high-density (HD) grids in five patients with intractable epilepsy. Notably, we introduce a new method of trial alignment based on the increase of the electrophysiological response, which virtually eliminates the confounding effects of systematic and non-systematic temporal differences within and between gestures execution. Results show that S1 classification scores are high (76%), similar to those obtained from M1 (74%) and sensorimotor cortex as a whole (85%), and significantly above chance level (25%). We conclude that S1 offers characteristic spatiotemporal neuronal activation patterns that are discriminative between gestures, and that it is possible to decode gestures with high accuracy from a very small patch of cortex using subdurally implanted HD grids. The feasibility of decoding hand gestures using HD-ECoG grids encourages further investigation of implantable BCI systems for direct interaction between the brain and external devices with multiple degrees of freedom.


Assuntos
Eletrocorticografia/métodos , Gestos , Língua de Sinais , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico , Interfaces Cérebro-Computador , Eletrodos Implantados , Epilepsia/cirurgia , Feminino , Ritmo Gama , Mãos , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Análise de Ondaletas , Adulto Jovem
18.
N Engl J Med ; 375(21): 2060-2066, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27959736

RESUMO

Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).


Assuntos
Esclerose Lateral Amiotrófica/reabilitação , Afonia/reabilitação , Interfaces Cérebro-Computador , Auxiliares de Comunicação para Pessoas com Deficiência , Quadriplegia/reabilitação , Esclerose Lateral Amiotrófica/complicações , Afonia/etiologia , Eletrodos Implantados , Feminino , Humanos , Pessoa de Meia-Idade , Córtex Motor , Reabilitação Neurológica/instrumentação , Quadriplegia/etiologia
19.
Proc Natl Acad Sci U S A ; 111(12): 4602-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616527

RESUMO

Whether measured by MRI or direct cortical physiology, infraslow rhythms have defined state invariant cortical networks. The time scales of this functional architecture, however, are unlikely to be able to accommodate the more rapid cortical dynamics necessary for an active cognitive task. Using invasively monitored epileptic patients as a research model, we tested the hypothesis that faster frequencies would spectrally bind regions of cortex as a transient mechanism to enable fast network interactions during the performance of a simple hear-and-repeat speech task. We term these short-lived spectrally covariant networks functional spectral networks (FSNs). We evaluated whether spectrally covariant regions of cortex, which were unique in their spectral signatures, provided a higher degree of task-related information than any single site showing more classic physiologic responses (i.e., single-site amplitude modulation). Taken together, our results showing that FSNs are a more sensitive measure of task-related brain activation and are better able to discern phonemic content strongly support the concept of spectrally encoded interactions in cortex. Moreover, these findings that specific linguistic information is represented in FSNs that have broad anatomic topographies support a more distributed model of cortical processing.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
20.
J Neural Eng ; 11(1): 016006, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24654268

RESUMO

OBJECTIVE: Electrocorticography (ECoG) electrodes implanted on the surface of the brain have recently emerged as a potential signal platform for brain-computer interface (BCI) systems. While clinical ECoG electrodes are currently implanted beneath the dura, epidural electrodes could reduce the invasiveness and the potential impact of a surgical site infection. Subdural electrodes, on the other hand, while slightly more invasive, may have better signals for BCI application. Because of this balance between risk and benefit between the two electrode positions, the effect of the dura on signal quality must be determined in order to define the optimal implementation for an ECoG BCI system. APPROACH: This study utilized simultaneously acquired baseline recordings from epidural and subdural ECoG electrodes while patients rested. Both macro-scale (2 mm diameter electrodes with 1 cm inter-electrode distance, one patient) and micro-scale (75 µm diameter electrodes with 1 mm inter-electrode distance, four patients) ECoG electrodes were tested. Signal characteristics were evaluated to determine differences in the spectral amplitude and noise floor. Furthermore, the experimental results were compared to theoretical effects produced by placing epidural and subdural ECoG contacts of different sizes within a finite element model. MAIN RESULTS: The analysis demonstrated that for micro-scale electrodes, subdural contacts have significantly higher spectral amplitudes and reach the noise floor at a higher frequency than epidural contacts. For macro-scale electrodes, while there are statistical differences, these differences are small in amplitude and likely do not represent differences relevant to the ability of the signals to be used in a BCI system. CONCLUSIONS: Our findings demonstrate an important trade-off that should be considered in developing a chronic BCI system. While implanting electrodes under the dura is more invasive, it is associated with increased signal quality when recording from micro-scale electrodes with very small sizes and spacing. If recording from larger electrodes, such as traditionally used clinically, the signal quality of epidural recordings is similar to that of subdural recordings.


Assuntos
Dura-Máter/fisiologia , Eletroencefalografia , Algoritmos , Interfaces Cérebro-Computador , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Eletrodos Implantados , Espaço Epidural/fisiologia , Epilepsia/fisiopatologia , Potenciais Evocados/fisiologia , Cabeça , Humanos , Microeletrodos , Modelos Anatômicos , Desenho de Prótese , Espaço Subdural/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...