Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5497, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679328

RESUMO

Human interleukin-1ß (hIL-1ß) is a pro-inflammatory cytokine involved in many diseases. While hIL-1ß directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1ß-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1ß antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1ß with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1ß encompassing two loops involved in hIL-1R1/hIL-1ß interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1ß function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1ß directed therapeutics.


Assuntos
Citocinas , Magreza , Humanos , Interleucina-1beta , Peso Molecular , Sítios de Ligação , Biofísica
2.
Nat Commun ; 12(1): 2442, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903593

RESUMO

The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1/genética , Neoplasias Ovarianas/genética , Fator de Transcrição PAX8/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fator de Transcrição PAX8/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Nature ; 574(7779): 581-585, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645725

RESUMO

The tricarboxylic acid cycle intermediate succinate is involved in metabolic processes and plays a crucial role in the homeostasis of mitochondrial reactive oxygen species1. The receptor responsible for succinate signalling, SUCNR1 (also known as GPR91), is a member of the G-protein-coupled-receptor family2 and links succinate signalling to renin-induced hypertension, retinal angiogenesis and inflammation3-5. Because SUCNR1 senses succinate as an immunological danger signal6-which has relevance for diseases including ulcerative colitis, liver fibrosis7, diabetes and rheumatoid arthritis3,8-it is of interest as a therapeutic target. Here we report the high-resolution crystal structure of rat SUCNR1 in complex with an intracellular binding nanobody in the inactive conformation. Structure-based mutagenesis and radioligand-binding studies, in conjunction with molecular modelling, identified key residues for species-selective antagonist binding and enabled the determination of the high-resolution crystal structure of a humanized rat SUCNR1 in complex with a high-affinity, human-selective antagonist denoted NF-56-EJ40. We anticipate that these structural insights into the architecture of the succinate receptor and its antagonist selectivity will enable structure-based drug discovery and will further help to elucidate the function of SUCNR1 in vitro and in vivo.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Animais , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y1/química , Transdução de Sinais , Anticorpos de Domínio Único/química , Especificidade da Espécie , Ácido Succínico/metabolismo
4.
ChemMedChem ; 13(18): 1997-2007, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29985556

RESUMO

CLK2 inhibition has been proposed as a potential mechanism to improve autism and neuronal functions in Phelan-McDermid syndrome (PMDS). Herein, the discovery of a very potent indazole CLK inhibitor series and the CLK2 X-ray structure of the most potent analogue are reported. This new indazole series was identified through a biochemical CLK2 Caliper assay screen with 30k compounds selected by an in silico approach. Novel high-resolution X-ray structures of all CLKs, including the first CLK4 X-ray structure, bound to known CLK2 inhibitor tool compounds (e.g., TG003, CX-4945), are also shown and yield insight into inhibitor selectivity in the CLK family. The efficacy of the new CLK2 inhibitors from the indazole series was demonstrated in the mouse brain slice assay, and potential safety concerns were investigated. Genotoxicity findings in the human lymphocyte micronucleus test (MNT) assay are shown by using two structurally different CLK inhibitors to reveal a major concern for pan-CLK inhibition in PMDS.


Assuntos
Transtornos Cromossômicos/tratamento farmacológico , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Deleção Cromossômica , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 22/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Indazóis/síntese química , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
5.
PLoS One ; 12(1): e0169026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052131

RESUMO

The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A.


Assuntos
Caspases/metabolismo , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Linfócitos T/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 10 de Linfoma CCL de Células B , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/genética , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Immunoblotting , Células Jurkat , Linfócitos/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Mutagênese , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
6.
PLoS One ; 11(9): e0163129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27649498

RESUMO

High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype ß1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Músculos/metabolismo , Mutagênese , Receptores Nicotínicos/genética , Sequência de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Cálcio/metabolismo , Células HEK293 , Humanos , Transporte de Íons/efeitos dos fármacos , Mutação , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Homologia de Sequência de Aminoácidos , Tubocurarina/farmacologia
7.
Chembiochem ; 16(17): 2433-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472355

RESUMO

Malaria continues to be one of the most devastating human diseases despite many efforts to limit its spread by prevention of infection or by pharmaceutical treatment of patients. We have conducted a screen for antiplasmodial compounds by using a natural product library. Here we report on cyclomarin A as a potent growth inhibitor of Plasmodium falciparum and the identification of its molecular target, diadenosine triphosphate hydrolase (PfAp3Aase), by chemical proteomics. Using a biochemical assay, we could show that cyclomarin A is a specific inhibitor of the plasmodial enzyme but not of the closest human homologue hFHIT. Co-crystallisation experiments demonstrate a unique binding mode of the inhibitor. One molecule of cyclomarin A binds a dimeric PfAp3Aase and prevents the formation of the enzyme⋅substrate complex. These results validate PfAp3Aase as a new drug target for the treatment of malaria. We have previously elucidated the structurally unrelated regulatory subunit ClpC1 of the ClpP protease as the molecular target of cyclomarin A in Mycobacterium tuberculosis. Thus, cyclomarin A is a rare example of a natural product with two distinct and specific modes of action.


Assuntos
Produtos Biológicos/química , Oligopeptídeos/química , Hidrolases Anidrido Ácido/antagonistas & inibidores , Hidrolases Anidrido Ácido/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Estrutura Terciária de Proteína
8.
J Biomol Screen ; 18(4): 407-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23150017

RESUMO

Translation initiation is a fine-tuned process that plays a critical role in tumorigenesis. The use of small molecules that modulate mRNA translation provides tool compounds to explore the mechanism of translational initiation and to further validate protein synthesis as a potential pharmaceutical target for cancer therapeutics. This report describes the development and use of a click beetle, dual luciferase cell-based assay multiplexed with a measure of compound toxicity using resazurin to evaluate the differential effect of natural products on cap-dependent or internal ribosome entry site (IRES)-mediated translation initiation and cell viability. This screen identified a series of cardiac glycosides as inhibitors of IRES-mediated translation using, in particular, the oncogene mRNA c-Myc IRES. Treatment of c-Myc-dependent cancer cells with these compounds showed a decrease in c-Myc protein associated with a significant modulation of cell viability. These findings suggest that inhibition of IRES-mediated translation initiation may be a strategy to inhibit c-Myc-driven tumorigenesis.


Assuntos
Glicosídeos Cardíacos/análise , Glicosídeos Cardíacos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Bioensaio , Glicosídeos Cardíacos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cimarina/química , Cimarina/farmacologia , Dano ao DNA , Genes Reporter , Células HEK293 , Humanos , Concentração Inibidora 50 , Inibidores da Síntese de Proteínas/análise , Inibidores da Síntese de Proteínas/química , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Ribossomos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biophys Chem ; 165-166: 56-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22542136

RESUMO

To broaden the use of the recombinant high-density lipoprotein (rHDL) approach to the characterization of lead compounds, we investigated the pharmacology of the human beta-2-adrenoceptor in nanolipid bilayers (rHDL) with a broad set of beta-adrenoceptor antagonists. To that end, we developed a homogeneous copper-chelate scintillation proximity binding assay (SPA) in order to compare receptor-ligand binding affinities before and after reconstitution into rHDLs. Our results clearly show that the beta-2-adrenoceptor reconstituted in rHDLs display the same pharmacology as that in cell membranes and that rHDLs can be used not only to measure affinities for a range of ligands but also to study binding kinetics.


Assuntos
Descoberta de Drogas , Bicamadas Lipídicas/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Células HEK293 , Humanos , Cinética , Bicamadas Lipídicas/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Mol Biol ; 419(1-2): 4-21, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22366302

RESUMO

The formation of the CBM (CARD11-BCL10-MALT1) complex is pivotal for antigen-receptor-mediated activation of the transcription factor NF-κB. Signaling is dependent on MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), which not only acts as a scaffolding protein but also possesses proteolytic activity mediated by its caspase-like domain. It remained unclear how the CBM activates MALT1. Here, we provide biochemical and structural evidence that MALT1 activation is dependent on its dimerization and show that mutations at the dimer interface abrogate activity in cells. The unliganded protease presents itself in a dimeric yet inactive state and undergoes substantial conformational changes upon substrate binding. These structural changes also affect the conformation of the C-terminal Ig-like domain, a domain that is required for MALT1 activity. Binding to the active site is coupled to a relative movement of caspase and Ig-like domains. MALT1 binding partners thus may have the potential of tuning MALT1 protease activity without binding directly to the caspase domain.


Assuntos
Caspases/química , Caspases/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteína 10 de Linfoma CCL de Células B , Domínio Catalítico , Células Cultivadas , Dimerização , Ativação Enzimática , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Terciária de Proteína , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
11.
Sensors (Basel) ; 10(9): 8143-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163646

RESUMO

Here we report the first crystal structure of a high-contrast genetically encoded circularly permuted green fluorescent protein (cpGFP)-based Ca(2+) sensor, Case16, in the presence of a low Ca(2+) concentration. The structure reveals the positioning of the chromophore within Case16 at the first stage of the Ca(2+)-dependent response when only two out of four Ca(2+)-binding pockets of calmodulin (CaM) are occupied with Ca(2+) ions. In such a "half Ca(2+)-bound state", Case16 is characterized by an incomplete interaction between its CaM-/M13-domains. We also report the crystal structure of the related Ca(2+) sensor Case12 at saturating Ca(2+) concentration. Based on this structure, we postulate that cpGFP-based Ca(2+) sensors can form non-functional homodimers where the CaM-domain of one sensor molecule binds symmetrically to the M13-peptide of the partner sensor molecule. Case12 and Case16 behavior upon addition of high concentrations of free CaM or M13-peptide reveals that the latter effectively blocks the fluorescent response of the sensor. We speculate that the demonstrated intermolecular interaction with endogenous substrates and homodimerization can impede proper functioning of this type of Ca(2+) sensors in living cells.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/química , Calmodulina/química , Proteínas de Fluorescência Verde/química , Sítios de Ligação , Técnicas Biossensoriais/instrumentação , Cálcio/análise , Cálcio/metabolismo , Calmodulina/metabolismo , Cristalização , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica
12.
Protein Expr Purif ; 59(2): 232-41, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375142

RESUMO

We describe a cloning and expression system which is based on the Escherichia coli T7 expression system and Gateway recombination technology. We have produced numerous destination vectors with selected fusion tags and an additional set of entry vectors containing the gene of interest and optional labeling tags. This powerful system enables us to transfer a cDNA to several expression vectors in parallel and combine them with various labeling tags. To remove the attached amino terminal tags along with the unwanted attB1 site, we inserted PreScission protease cleavage sites. In contrast to the commercially available destination vectors, our plasmids provide kanamycin resistance, which can be an advantage when expressing toxic proteins in E. coli. Some small-scale protein expression experiments are shown to demonstrate the usefulness of these novel Gateway vectors. In summary, this system has some benefits over the widely used and commercially available Gateway standard system, and it enables many different combinations for expression constructs from a single gene of interest.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos/genética , Proteínas Recombinantes/biossíntese , Sequência de Bases , Humanos , Dados de Sequência Molecular , Plasmídeos/genética , Proteínas Recombinantes/genética
13.
J Cell Biochem ; 104(5): 1660-70, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18320579

RESUMO

G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA. RhoA is involved in many cellular and physiological aspects, and a dysfunction of the G(12/13)-Rho pathway can lead to hypertension, cardiovascular diseases, stroke, impaired wound healing and immune cell functions, cancer progression and metastasis, or asthma. In this study, regulator of G protein signaling (RGS) domain-containing RhoGEFs were tagged with enhanced green fluorescent protein (EGFP) to detect their subcellular localization and translocation upon receptor activation. Constitutively active Galpha(12) and Galpha(13) mutants induced redistribution of these RhoGEFs from the cytosol to the plasma membrane. Furthermore, a pronounced and rapid translocation of p115-RhoGEF from the cytosol to the plasma membrane was observed upon activation of several G(12/13)-coupled GPCRs in a cell type-independent fashion. Plasma membrane translocation of p115-RhoGEF stimulated by a GPCR agonist could be completely and rapidly reversed by subsequent application of an antagonist for the respective GPCR, that is, p115-RhoGEF relocated back to the cytosol. The translocation of RhoGEF by G(12/13)-linked GPCRs can be quantified and therefore used for pharmacological studies of the pathway, and to discover active compounds in a G(12/13)-related disease context.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Membrana Celular/metabolismo , Cães , Células HeLa , Humanos , Transporte Proteico , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho , Frações Subcelulares
14.
Curr Opin Drug Discov Devel ; 10(2): 193-202, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17436555

RESUMO

The requirement for high levels of stable and functional proteins remains a bottleneck in many processes of modern drug discovery, including the high-throughput screening for novel active compounds or the determination of protein structures. Recently, numerous developments have been made to improve the production of soluble and active proteins in heterologous expression systems. These include versatile expression vectors, new methods for quick cloning, the introduction of novel and/or improved prokaryotic and eukaryotic expression systems, and more efficient and faster chromatographic procedures that result in highly pure proteins. In addition, several techniques allow the attachment of small molecular labels to proteins in a site-specific manner, which can be highly useful for various important experimental techniques in current drug discovery.


Assuntos
Clonagem Molecular/métodos , Proteínas/síntese química , Animais , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo , Humanos , Proteínas/isolamento & purificação
15.
Int J Biol Macromol ; 39(1-3): 66-76, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16503347

RESUMO

Modern drug discovery strongly depends on the availability of target proteins in sufficient amounts and with desired properties. For some applications, proteins have to be produced with specific modifications such as tags for protein purification, fluorescent or radiometric labels for detection, glycosylation and phosphorylation for biological activity, and many more. It is well known that covalent modifications can have adverse effects on the biological activity of some target proteins. It is therefore one of the major challenges in protein chemistry to generate covalent modifications without affecting the biological activity of the target protein. Current procedures for modification mostly rely on non-specific labelling of lysine or cysteine residues on the protein of interest, but alternative approaches dedicated to site-specific protein modification are being developed and might replace most of the commonly used methodologies. In this study, we investigated two novel methods where target proteins can be expressed in E. coli with a fusion partner that allows protein modification in a covalent and highly selective manner. Firstly, we explored a method based on the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (hAGT) as a fusion tag for site-directed attachment of small molecules. The AGT-tag (SNAP-tag) can accept almost any chemical moiety when it is attached to the guanine base through a benzyl group. In our experiments we were able to label a target protein fused to the AGT-tag with various fluorophores coupled to O6-benzylguanine. Secondly, we tested in vivo and in vitro site-directed biotinylation with two different tags, consisting of either 15 (AviTag) or 72 amino acids (BioEase tag), which serve as a substrate for bacterial biotin ligase birA. When birA protein was co-expressed in E. coli biotin was incorporated almost completely into a model protein which carried these recognition tags at its C-terminus. The same findings were also obtained with in vitro biotinylation assays using pure birA independently over-expressed in E. coli and added to the biotinylation reaction in the test tube. For both biotinylation methods, peptide mapping and LC-MS proved the highly site-specific modification of the corresponding tags. Our results indicate that these novel site-specific labelling reactions work in a highly efficient manner, allow almost quantitative labelling of the target proteins, have no deleterious effect on the biological activity and are easy to perform in standard laboratories.


Assuntos
Biotina/química , Carbono-Nitrogênio Ligases/química , Proteínas de Escherichia coli/química , Corantes Fluorescentes/química , Guanosina/química , O(6)-Metilguanina-DNA Metiltransferase/química , Proteínas Recombinantes de Fusão/química , Proteínas Repressoras/química , Fatores de Transcrição/química , Biotinilação/métodos , Carbono-Nitrogênio Ligases/genética , Proteínas de Escherichia coli/genética , Guanosina/análogos & derivados , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
16.
Anal Biochem ; 343(2): 244-55, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15963938

RESUMO

Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.


Assuntos
Corantes Fluorescentes/síntese química , Ubiquitina/análogos & derivados , Ubiquitina/síntese química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Endopeptidases/química , Endopeptidases/metabolismo , Corantes Fluorescentes/química , Cinética , Lisina/química , Lisina/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Fatores de Tempo , Ubiquitina/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...