Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Radiol ; 59(2): 190-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16765006

RESUMO

THE PURPOSE OF THIS STUDY: To evaluate the safety and efficacy of an enhanced magnetic resonance-guided focused ultrasound (MRgFUS) emission protocol that results in more extensive treatment by increasing the volume of each focal ablation using the same energy. MATERIALS AND METHODS: Six pigs were treated with an MRgFUS system combined with real-time MR, for imaging and temperature mapping, with 102 "enhanced" and 97 "regular" focal ablations performed on both buttock muscles. Real-time imaging, temperature mapping, and acoustic reflected spectrum data enabled immediate evaluation of the results. MR contrast-enhanced images and pathology examinations were used for confirmation. RESULTS: The location of the ablated volume by "enhanced" sonication is predictable, with a maximum possible shift of 6 mm toward, and 3 mm away, from the transducer. The ablated volume after enhanced sonication was, on average, 1.8 times larger than after a regular sonication of the same energy. Pathology results showed the same thermally induced damage patterns in the enhanced sonications and the regular sonications. CONCLUSION: Accelerated MRgFUS with enhanced sonication is a safe, controllable, and more effective tissue ablative modality than standard sonication. This new technology may significantly reduce the length of tumor ablation procedures. (Isn't the new technology you're talking about MRgFUS? If so, you don't need to repeat it at the end of this sentence.).


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/cirurgia , Sonicação , Cirurgia Assistida por Computador/métodos , Terapia por Ultrassom/métodos , Animais , Modelos Animais , Músculo Esquelético/patologia , Suínos , Terapia por Ultrassom/instrumentação
2.
Eur J Radiol ; 59(2): 157-62, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16725294

RESUMO

BACKGROUND: Liver surgery is technically demanding and is considered a major procedure with relatively high morbidity rates. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) uses focused ultrasonic energy to create a heat coagulation lesion, which can be achieved in a totally controlled, very accurate manner (<1 mm). The aim of this study was to evaluate the safety and accuracy of non-invasive focal ablation of liver tissue achieved by consecutive MRgFUS sonications. MATERIALS AND METHODS: Six MRgFUS procedures were performed in five pigs under general anesthesia, with the ExAblate 2000 system (InSightec, Israel). Real-time imaging and temperature mapping (Signa Twinspeed 1.5T, GEHC, USA) enabled the immediate evaluation of the results of each sonication. Different foci were chosen within the liver. These mock lesions were ablated by several sonications, each of them performed during 20-30 s of apnea. Between sonications, the pigs were normally ventilated. The pigs were sacrificed 3-21 days after the procedure and their livers were examined. RESULTS: The MRgFUS created complete tissue destruction of mock lesions in different areas of the pig's liver. The lesion sizes in each animal varied according to the number of sonications used and the extent of overlap between adjacent sonications. The lesion ranged in size from 1.5 cm x 1.5 cm x 2.0 cm to 5.5 cm x 4.5 cm x 2.0 cm. There was no morbidity. CONCLUSIONS: MRgFUS under general anesthesia is a safe, completely non-invasive technology for the ablation of liver tissue. Liver tissue can be ablated in a very accurate manner, based on the pre-treatment planning on the MR images. The MR imaging characteristics, including real-time temperature mapping, enable real-time control of every step of the ablation process. Mechanical ventilation with intermittent periods of apnea is a technique that overcomes the problem of the respiratory movements of the liver.


Assuntos
Fígado/cirurgia , Imageamento por Ressonância Magnética , Cirurgia Assistida por Computador , Terapia por Ultrassom/métodos , Animais , Segurança de Equipamentos , Fígado/patologia , Modelos Animais , Suínos
3.
HPB (Oxford) ; 8(4): 292-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-18333139

RESUMO

BACKGROUND: Canine hepatocellular adenomas are benign, well-differentiated, primary hepatic tumors. Surgical resection is technically demanding and is considered a major procedure with relatively high morbidity rates. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) uses focused ultrasonic energy to non-invasively create a heat-coagulated lesion deep within the body. This effect can be achieved in a controlled, accurate manner. The aim of this study was to evaluate the safety, accuracy and efficacy of non-invasive focal ablation of tissue volumes of a canine benign liver tumour by consecutive MRgFUS sonications. MATERIALS AND METHODS: Four MRgFUS procedures were performed in a 10-year-old, male, mixed large breed dog (45 kg) under general anaesthesia. The exact location and volume of the ablated areas were planned on the MR images. Real-time MR imaging and temperature mapping enabled the immediate evaluation of the effect of each sonication. Different areas were chosen within the tumour. These volumes of tumoral tissue were ablated by multiple sonications. To allow accurate targeting and quality imaging, sonications were performed during 20-30 s of apnoea. Between the sonications the dog was normally ventilated. The dog was operated 21 days after the fourth ablative procedure. The tumour was resected and histopathologically examined. RESULTS: The MRgFUS created necrosis with contiguous areas of complete tissue destruction within the liver tumour, in full accordance with the planning. A focal thermal injury to the cartilage of the right lower ribs was noted after the fourth treatment. This lesion became infected and was treated surgically. Ten months after the last treatment the dog is well and healthy. CONCLUSIONS: Focused ultrasound ablation of liver tumoral tissue with MR guidance under general anaesthesia and controlled apnoea is a safe and accurate treatment modality. Its main advantage is that it is a completely non-invasive image-guided treatment. The ablation of significant volumes of a highly vascular liver tumoral tissue was achieved. Such tissue can be ablated in a very accurate manner, exactly according to the pretreatment planning on the MR images. The MR imaging characteristics, including real-time temperature mapping, enable real-time control of every step of the ablation process. Mechanical ventilation with intermittent apnoea periods overcomes the problem of the respiratory movements of the liver. Care must be taken to avoid the passage of the ultrasound beam through energy-absorbing calcified tissue.

4.
Gastroenterology ; 127(5 Suppl 1): S242-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15508090

RESUMO

A number of minimally invasive methods have been tested for the thermal ablation of liver tumors as an alternative to surgical resection. The use of focused ultrasound transducers to ablate deep tumors offers the first completely noninvasive alternative to these techniques. By increasing the flexibility of this technology with modern phased-array transducer design and by combining it with magnetic resonance imaging for targeting and online guidance, a powerful tool results with the potential to offer treatment to a larger population of patients, to reduce trauma to the patient, and to reduce the cost of treatment. In this article, we review previous work with focused ultrasound in the liver and recent experimental results with magnetic resonance imaging guidance.


Assuntos
Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/métodos , Neoplasias Hepáticas/cirurgia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Ablação por Cateter/instrumentação , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética , Ultrassonografia de Intervenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA