Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Cell Death Discov ; 10(1): 124, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461159

RESUMO

Pancreatic cancer is a malignant tumor of the digestive system. It is highly aggressive, easily metastasizes, and extremely difficult to treat. This study aimed to analyze the genes that might regulate pancreatic cancer migration to provide an essential basis for the prognostic assessment of pancreatic cancer and individualized treatment. A CRISPR knockout library directed against 915 murine genes was transfected into TB 32047 cell line to screen which gene loss promoted cell migration. Next-generation sequencing and PinAPL.py- analysis was performed to identify candidate genes. We then assessed the effect of serine/threonine kinase 11 (STK11) knockout on pancreatic cancer by wound-healing assay, chick agnosia (CAM) assay, and orthotopic mouse pancreatic cancer model. We performed RNA sequence and Western blotting for mechanistic studies to identify and verify the pathways. After accelerated Transwell migration screening, STK11 was identified as one of the top candidate genes. Further experiments showed that targeted knockout of STK11 promoted the cell migration and increased liver metastasis in mice. Mechanistic analyses revealed that STK11 knockout influences blood vessel morphogenesis and is closely associated with the enhanced expression of phosphodiesterases (PDEs), especially PDE4D, PDE4B, and PDE10A. PDE4 inhibitor Roflumilast inhibited STK11-KO cell migration and tumor size, further demonstrating that PDEs are essential for STK11-deficient cell migration. Our findings support the adoption of therapeutic strategies, including Roflumilast, for patients with STK11-mutated pancreatic cancer in order to improve treatment efficacy and ultimately prolong survival.

2.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458636

RESUMO

BACKGROUND: Generally, early-stage breast cancer has a good prognosis. However, if it spreads systemically, especially with pulmonary involvement, prospects worsen dramatically. Importantly, tumor-infiltrating T cells contribute to tumor control, particularly intratumoral T cells with a tissue-resident memory phenotype are associated with an improved clinical outcome. METHODS: Here, we use an adenoviral vector vaccine encoding endogenous tumor-associated antigens adjuvanted with interleukin-1ß to induce tumor-specific tissue-resident memory T cells (TRM) in the lung for the prevention and treatment of pulmonary metastases in the murine 4T1 breast cancer model. RESULTS: The mucosal delivery of the vaccine was highly efficient in establishing tumor-specific TRM in the lung. Concomitantly, a single mucosal vaccination reduced the growth of pulmonary metastases and improved the survival in a prophylactic treatment. Vaccine-induced TRM contributed to these protective effects. In a therapeutic setting, the vaccination induced a pronounced T cell infiltration into metastases but resulted in only a minor restriction of the disease progression. However, in combination with stereotactic radiotherapy, the vaccine increased the survival time and rate of tumor-bearing mice. CONCLUSION: In summary, our study demonstrates that mucosal vaccination is a promising strategy to harness the power of antitumor TRM and its potential combination with state-of-the-art treatments.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Animais , Camundongos , Antígenos de Neoplasias , Memória Imunológica , Vacinação , Vacinas Anticâncer/uso terapêutico , Neoplasias Pulmonares/terapia
3.
Front Immunol ; 15: 1307769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380316

RESUMO

In this randomized, placebo-controlled cross-over trial we aimed to investigate if radon spa therapy exerts more pain relief than exposure to warm water alone. In addition, immunological parameters were assessed in both treatment groups. In the RAD-ON02 trial, 116 patients suffering from musculoskeletal disorders (MSDs) received either serial radon spa or solely warm water baths. Pain intensity was assessed by determination of different pain parameters on a visual analogue scale and by pressure point dolorimetry at baseline and at weeks 4, 12 and 24. The longitudinal immune status of the patients was analyzed by a flow cytometry-based assay from peripheral blood at the time points of pain assessments. There were no side effects attributable to radon exposure observed. However, radon spa was superior to warm water applications at week 4 in terms of pain reduction. Pain and morning stiffness at the time of assessment were significantly reduced after radon spa (p<0.001, p<0.01) but not after warm water baths. The dolorimetry resulted in a significantly higher exerted pressure strength in patients after radon spa (p<0.001), but not after warm water applications. During the long-term follow-up, both treatment modalities reduced pain to a similar degree and pain modulation was not distorted by the participants' intake of analgesics. No significant changes in the immune status attributable specifically to radon were found, even though the increase in regulatory T cell counts occurs earlier after radon baths than after sole warm water baths and a higher level of significance is reached after radon spa at week 24. Serial radon spa has additive pain-relieving effects. The immunological parameters assessed in our study appear not to be directly linked to the pain reduction caused by radon exposure, at least in MSD patients with predominantly degenerative diseases. Clinical trial registration: https://www.clinicaltrialsregister.eu/ctr-search/search?query=rad-on02, identifier 2016-002085-31; https://drks.de/search/de/trial, identifier DRKS00016019.


Assuntos
Doenças Musculoesqueléticas , Radônio , Humanos , Doenças Musculoesqueléticas/tratamento farmacológico , Dor/tratamento farmacológico , Estudos Prospectivos , Radônio/uso terapêutico , Água
4.
Neoplasia ; 49: 100953, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38232493

RESUMO

PURPOSE: Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC. METHODS: The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy. RESULTS: The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent. CONCLUSIONS: Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Quimioterapia de Indução/métodos , Imunofenotipagem , Imunoterapia , Linfócitos T CD8-Positivos , Imunidade Inata
5.
J Immunother Cancer ; 12(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212124

RESUMO

BACKGROUND: Immunotherapies targeting immune checkpoints have gained increasing attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs (circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-1/PD-L1 pathway, and have shown potential in predicting immunotherapy efficacy. Yet, the detailed roles of circRNAs in cancer immunotherapy are not fully understood. While existing databases focus on either circRNA profiles or immunotherapy cohorts, there is currently no platform that enables the exploration of the intricate interplay between circRNAs and anti-tumor immunotherapy. A comprehensive resource combining circRNA profiles, immunotherapy responses, and clinical outcomes is essential to advance our understanding of circRNA-mediated tumor-immune interactions and to develop effective biomarkers. METHODS: To address these gaps, we constructed The Cancer CircRNA Immunome Atlas (TCCIA), the first database that combines circRNA profiles, immunotherapy response data, and clinical outcomes across multicancer types. The construction of TCCIA involved applying standardized preprocessing to the raw sequencing FASTQ files, characterizing circRNA profiles using an ensemble approach based on four established circRNA detection tools, analyzing tumor immunophenotypes, and compiling immunotherapy response data from diverse cohorts treated with immune checkpoint blockades (ICBs). RESULTS: TCCIA encompasses over 4,000 clinical samples obtained from 25 cohorts treated with ICBs along with other treatment modalities. The database provides researchers and clinicians with a cloud-based platform that enables interactive exploration of circRNA data in the context of ICB. The platform offers a range of analytical tools, including browse of identified circRNAs, visualization of circRNA abundance and correlation, association analysis between circRNAs and clinical variables, assessment of the tumor immune microenvironment, exploration of tumor molecular signatures, evaluation of treatment response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and resistant tumors. To illustrate the utility of TCCIA, we showcase two examples, including circTMTC3 and circMGA, by employing analysis of large-scale melanoma and bladder cancer cohorts, which unveil distinct impacts and clinical implications of different circRNA expression in cancer immunotherapy. CONCLUSIONS: TCCIA represents a significant advancement over existing resources, providing a comprehensive platform to investigate the role of circRNAs in immuno-oncology.


Assuntos
Melanoma , RNA Circular , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Biomarcadores/análise , Imunoterapia , Microambiente Tumoral
7.
Neoplasia ; 45: 100944, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857049

RESUMO

PURPOSE: Human papilloma virus (HPV) positive head and neck squamous cell carcinoma (HNSCC) tumors respond significantly better to anticancer treatments. It is assumed to be due to a better response to radiotherapy (RT), and presumably to an increased immunogenicity. However, little is known how the immune phenotype of HNSCC tumor cells is modulated by standard treatment, namely by radiochemotherapy (RCT). METHODS: Therefore, we aimed to examine the impact of the HPV status on the immune phenotype of HNSCC cell lines following RCT with 5 × 3Gy or 1 × 19.3Gy and/or docetaxel, by analyzing cell death, release of damage-associated molecular patterns (DAMPs), surface expression of immune checkpoint molecules (ICMs) and the impact on activation of human monocyte-derived dendritic cells (hmDCs). RESULTS: Cell death induction and Hsp70 release following RCT was independent of the HPV status, and RCT significantly increased the expression of the immune suppressive ICMs PD-L1, PD-L2 and HVEM. An immune stimulatory ICM, CD137, was significantly increased following RCT only on HPV-positive cell lines, as well as the release of HMGB1. Although the treatment increased cell death and modulated ICM expression in HNSCC, the hmDCs were not activated after co-incubation with treated tumor cells. CONCLUSION: Our data with the HPV-dependent release of HMGB1 and increased expression of CD137 following RCT provide a hint for increased immunogenicity underlining the better prognosis for HPV positive tumors following RCT.


Assuntos
Carcinoma de Células Escamosas , Proteína HMGB1 , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Proteína HMGB1/genética , Proteína HMGB1/uso terapêutico , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas/metabolismo , Fenótipo
8.
Front Oncol ; 13: 1265024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790756

RESUMO

Purpose: The potential of large language models in medicine for education and decision-making purposes has been demonstrated as they have achieved decent scores on medical exams such as the United States Medical Licensing Exam (USMLE) and the MedQA exam. This work aims to evaluate the performance of ChatGPT-4 in the specialized field of radiation oncology. Methods: The 38th American College of Radiology (ACR) radiation oncology in-training (TXIT) exam and the 2022 Red Journal Gray Zone cases are used to benchmark the performance of ChatGPT-4. The TXIT exam contains 300 questions covering various topics of radiation oncology. The 2022 Gray Zone collection contains 15 complex clinical cases. Results: For the TXIT exam, ChatGPT-3.5 and ChatGPT-4 have achieved the scores of 62.05% and 78.77%, respectively, highlighting the advantage of the latest ChatGPT-4 model. Based on the TXIT exam, ChatGPT-4's strong and weak areas in radiation oncology are identified to some extent. Specifically, ChatGPT-4 demonstrates better knowledge of statistics, CNS & eye, pediatrics, biology, and physics than knowledge of bone & soft tissue and gynecology, as per the ACR knowledge domain. Regarding clinical care paths, ChatGPT-4 performs better in diagnosis, prognosis, and toxicity than brachytherapy and dosimetry. It lacks proficiency in in-depth details of clinical trials. For the Gray Zone cases, ChatGPT-4 is able to suggest a personalized treatment approach to each case with high correctness and comprehensiveness. Importantly, it provides novel treatment aspects for many cases, which are not suggested by any human experts. Conclusion: Both evaluations demonstrate the potential of ChatGPT-4 in medical education for the general public and cancer patients, as well as the potential to aid clinical decision-making, while acknowledging its limitations in certain domains. Owing to the risk of hallucinations, it is essential to verify the content generated by models such as ChatGPT for accuracy.

9.
J Pers Med ; 13(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37888125

RESUMO

BACKGROUND: Irradiation plays an important role in the oncological treatment of various tumor entities. The aim of the study was to investigate the influence of different irradiation regimens on random-pattern flaps at the molecular and histopathological levels. METHODS: Twenty-five rats underwent harvesting of bilateral random-pattern fasciocutaneous flaps. The right flaps received irradiation, while the left flaps served as non-irradiated intraindividual controls. Five rats served as a non-irradiated control group. Four different irradiation regimens with give rats each were tested: 20 Gy postoperatively, 3 × 12 Gy postoperatively, 20 Gy preoperatively, and 3 × 12 Gy preoperatively. Two weeks after surgery, HE staining and immunohistochemical staining for CD68 and ERG, as well as PCR analysis to detect Interleukin 6, HIF-1α, and VEGF, were performed. RESULTS: A postoperative cumulative higher dose of irradiation appeared to result in an increase in necrosis, especially in the superficial layers of the flap compared to preoperative or single-stage irradiation. In addition, we observed increased expression of VEGF and HIF-1α in all irradiation groups. CONCLUSION: Even though no statistically significant differences were found between the different groups, there was a tendency for fractional postoperative irradiation with a higher total dose to have a more harmful effect compared to preoperative or single-dose irradiation.

10.
Int J Hyperthermia ; 40(1): 2265590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37813393

RESUMO

PURPOSE: Local tumor heating with microwave applicators has been used in multimodal breast cancer therapies. This hyperthermia allows to target small regions while marginally affecting healthy tissue. However, most preclinical examinations only use simplified heating methods. Microwave applicators employed for deep heating to provide the greatest depth of penetration operate in the tens to hundreds frequency. Therefore, we aimed to adapt and test a clinically often used broadband spiral applicator (105-125 MHz) for hyperthermia with clinically wanted temperatures of 41 and 44 °C in in vitro settings with human breast cancer cell lines and with simulations. MATERIAL AND METHODS: A clinically used spiral-microwave applicator (105-125 MHz) was the basis for the construction, simulation, and optimization of the in vitro HT set-up under stationary conditions. Microwave effects on tumor cell death of two human breast cancer cell lines (hormone-receptor positive MCF-7 and triple-negative MDA-MB-231) were compared with conventional heating in a contact-heating chamber. Cell death forms were analyzed by AnnexinV/Propidium iodide staining. RESULTS: An in vitro spiral applicator microwave-based heating system that is effective at applying heat directly to adherent breast cancer cells in cell culture flasks with medium was developed. Simulations with COMSOL proved appropriate heat delivery and an optimal energy coupling at a frequency of 111 ± 2.5 MHz. Apoptosis and necrosis induction and significantly higher cell death rates than conventional heating at both temperatures were observed, and MCF-7 showed higher death rates than MDA-MB-231 tumor cells. CONCLUSIONS: Well-characterized in vitro heating systems are mandatory for a better understanding of the biological effects of hyperthermia in tumor therapies and to finally determine optimized clinical treatment schemes.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Micro-Ondas/uso terapêutico , Neoplasias da Mama/terapia , Hipertermia Induzida/métodos , Temperatura Alta , Hipertermia , Apoptose
11.
Cancers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760588

RESUMO

We introduce a deep-learning- and a registration-based method for automatically analyzing the spatial distribution of nodal metastases (LNs) in head and neck (H/N) cancer cohorts to inform radiotherapy (RT) target volume design. The two methods are evaluated in a cohort of 193 H/N patients/planning CTs with a total of 449 LNs. In the deep learning method, a previously developed nnU-Net 3D/2D ensemble model is used to autosegment 20 H/N levels, with each LN subsequently being algorithmically assigned to the closest-level autosegmentation. In the nonrigid-registration-based mapping method, LNs are mapped into a calculated template CT representing the cohort-average patient anatomy, and kernel density estimation is employed to estimate the underlying average 3D-LN probability distribution allowing for analysis and visualization without prespecified level definitions. Multireader assessment by three radio-oncologists with majority voting was used to evaluate the deep learning method and obtain the ground-truth distribution. For the mapping technique, the proportion of LNs predicted by the 3D probability distribution for each level was calculated and compared to the deep learning and ground-truth distributions. As determined by a multireader review with majority voting, the deep learning method correctly categorized all 449 LNs to their respective levels. Level 2 showed the highest LN involvement (59.0%). The level involvement predicted by the mapping technique was consistent with the ground-truth distribution (p for difference 0.915). Application of the proposed methods to multicenter cohorts with selected H/N tumor subtypes for informing optimal RT target volume design is promising.

12.
J Am Chem Soc ; 145(40): 22252-22264, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773090

RESUMO

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).

13.
Int J Hyperthermia ; 40(1): 2248424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611915

RESUMO

INTRODUCTION: Neoadjuvant chemotherapy and radiotherapy for the management of soft tissue sarcomas (STS) are still preferably delivered sequentially, with or without concurrent hyperthermia. Concurrent delivery of chemo-, radio- and thermotherapy may produce synergistic effects and reduce chemotherapy-free intervals. The few available studies suggest that concurrent chemoradiation (CRT) has a greater local effect. Data on the efficacy and toxicity of adding hyperthermia to CRT (CRTH) are sparse. MATERIALS AND METHODS: A cohort of 101 patients with STS of the extremities and trunk who received CRT (n = 33) or CRTH (n = 68) before resection of macroscopic tumor (CRT: n = 19, CRTH: n = 49) or re-resection following a non-oncological resection, so called 'whoops procedure', (CRT: n = 14, CRTH: n = 19) were included in this retrospective study. CRT consisted of two cycles of doxorubicine (50 mg/m2 on d2) plus ifosfamide (1500 mg/m2 on d1-5, q28) plus radiation doses of up to 60 Gy. Hyperthermia was delivered in two sessions per week. RESULTS: All patients received the minimum dose of 50 Gy. Median doses of ifosfamide and doxorubicin were comparable between CRT (75%/95%) and CRTH (78%/97%). The median number of hyperthermia sessions was seven. There were no differences in acute toxicities. Major wound complications occurred in 15% (CRT) vs. 25% (CRTH) (p = 0.19). In patients with macroscopic disease, the addition of hyperthermia resulted in a tendency toward improved remission: regression ≥90% occurred in 21/48 (CRTH) vs. 4/18 (CRT) patients (p = 0.197). With a median postoperative follow-up of 72 months, 6-year local control and overall survival rates for CRTH vs. CRT alone were 85 vs. 78% (p = 0.938) and 79 vs. 71% (p = 0.215). CONCLUSIONS: Both CRT and CRTH are well tolerated with an expected rate of wound complications. The results suggest that adding hyperthermia may improve tumor response.


Assuntos
Hipertermia Induzida , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Terapia Neoadjuvante , Ifosfamida , Estudos Retrospectivos , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Hipertermia , Quimiorradioterapia , Doxorrubicina/uso terapêutico
14.
Strahlenther Onkol ; 199(12): 1080-1090, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620671

RESUMO

DNA damage is one of the foremost mechanisms of irradiation at the biological level. After the first isolation of DNA by Friedrich Miescher in the 19th century, the structure of DNA was described by Watson and Crick. Several Nobel Prizes have been awarded for DNA-related discoveries. This review aims to describe the historical perspective of DNA in radiation biology. Over the decades, DNA damage has been identified and quantified after irradiation. Depending on the type of sensing, different proteins are involved in sensing DNA damage and repairing the damage, if possible. For double-strand breaks, the main repair mechanisms are non-homologous end joining and homologous recombination. Additional mechanisms are the Fanconi anaemia pathway and base excision repair. Different methods have been developed for the detection of DNA double-strand breaks. Several drugs have been developed that interfere with different DNA repair mechanisms, e.g., PARP inhibitors. These drugs have been established in the standard treatment of different tumour entities and are being applied in several clinical trials in combination with radiotherapy. Over the past decades, it has become apparent that DNA damage mechanisms are also directly linked to the immune response in tumours. For example, cytosolic DNA fragments activate the innate immune system via the cGAS STING pathway.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Quebras de DNA de Cadeia Dupla , DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades , Dano ao DNA
16.
Front Oncol ; 13: 981239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152024

RESUMO

Only a subset of patients with triple-negative breast cancer (TNBC) benefits from a combination of radio- (RT) and immunotherapy. Therefore, we aimed to examine the impact of radioresistance and brain metastasizing potential on the immunological phenotype of TNBC cells following hypofractionated RT by analyzing cell death, immune checkpoint molecule (ICM) expression and activation of human monocyte-derived dendritic cells (DCs). MDA-MB-231 triple-negative breast cancer tumor cells were used as model system. Apoptosis was the dominant cell death form of brain metastasizing tumor cells, while Hsp70 release was generally significantly increased following RT and went along with necrosis induction. The ICMs PD-L1, PD-L2, HVEM, ICOS-L, CD137-L and OX40-L were found on the tumor cell surfaces and were significantly upregulated by RT with 5 x 5.2 Gy. Strikingly, the expression of immune suppressive ICMs was significantly higher on radioresistant clones compared to their respective non-radioresistant ones. Although hypofractionated RT led to significant cell death induction and release of Hsp70 in all tumor cell lines, human monocyte-derived DCs were not activated after co-incubation with RT-treated tumor cells. We conclude that radioresistance is a potent driver of immune suppressive ICM expression on the surface of TNBC MDA-MB-231 cells. This mechanism is generally known to predominantly influence the effector phase, rather than the priming phase, of anti-tumor immune responses.

17.
Front Oncol ; 13: 1115258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874135

RESUMO

Background: Deep learning-based head and neck lymph node level (HN_LNL) autodelineation is of high relevance to radiotherapy research and clinical treatment planning but still underinvestigated in academic literature. In particular, there is no publicly available open-source solution for large-scale autosegmentation of HN_LNL in the research setting. Methods: An expert-delineated cohort of 35 planning CTs was used for training of an nnU-net 3D-fullres/2D-ensemble model for autosegmentation of 20 different HN_LNL. A second cohort acquired at the same institution later in time served as the test set (n = 20). In a completely blinded evaluation, 3 clinical experts rated the quality of deep learning autosegmentations in a head-to-head comparison with expert-created contours. For a subgroup of 10 cases, intraobserver variability was compared to the average deep learning autosegmentation accuracy on the original and recontoured set of expert segmentations. A postprocessing step to adjust craniocaudal boundaries of level autosegmentations to the CT slice plane was introduced and the effect of autocontour consistency with CT slice plane orientation on geometric accuracy and expert rating was investigated. Results: Blinded expert ratings for deep learning segmentations and expert-created contours were not significantly different. Deep learning segmentations with slice plane adjustment were rated numerically higher (mean, 81.0 vs. 79.6, p = 0.185) and deep learning segmentations without slice plane adjustment were rated numerically lower (77.2 vs. 79.6, p = 0.167) than manually drawn contours. In a head-to-head comparison, deep learning segmentations with CT slice plane adjustment were rated significantly better than deep learning contours without slice plane adjustment (81.0 vs. 77.2, p = 0.004). Geometric accuracy of deep learning segmentations was not different from intraobserver variability (mean Dice per level, 0.76 vs. 0.77, p = 0.307). Clinical significance of contour consistency with CT slice plane orientation was not represented by geometric accuracy metrics (volumetric Dice, 0.78 vs. 0.78, p = 0.703). Conclusions: We show that a nnU-net 3D-fullres/2D-ensemble model can be used for highly accurate autodelineation of HN_LNL using only a limited training dataset that is ideally suited for large-scale standardized autodelineation of HN_LNL in the research setting. Geometric accuracy metrics are only an imperfect surrogate for blinded expert rating.

18.
Cells ; 12(4)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36831183

RESUMO

Radiotherapy (RT) of the brain is a common treatment for patients with high-grade gliomas and brain metastases. It has previously been shown that reactivation of cytomegalovirus (CMV) frequently occurs during RT of the brain. This causes neurological decline, demands antiviral treatment, and is associated with a worse prognosis. CMV-specific T cells are characterized by a differentiated effector memory phenotype and CD45RA+ CCR7- effector memory T (TEMRA) cells were shown to be enriched in CMV seropositive individuals. In this study, we investigated the distribution of TEMRA cells and their subsets in the peripheral blood of healthy donors and, for the first time, prospectively within the scope of the prospective Glio-CMV-01 clinical trial of patients with high-grade glioma and brain metastases during radiation therapy as a potential predictive marker. First, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of TEMRA cells in a longitudinal manner. The CMV serostatus and age were considered as influencing factors. We revealed that patients who had a reactivation of CMV have significantly higher amounts of CD8+ TEMRA cells. Further, the distribution of the subsets of TEMRA cells based on the expression of CD27, CD28, and CD57 is highly dependent on the CMV serostatus. We conclude that the percentage of CD8+ TEMRA cells out of all CD8+ T cells has the potential to serve as a biomarker for predicting the risk of CMV reactivation during RT of the brain. Furthermore, this study highlights the importance of taking the CMV serostatus into account when analyzing TEMRA cells and their subsets.


Assuntos
Neoplasias Encefálicas , Infecções por Citomegalovirus , Humanos , Citomegalovirus , Receptores CCR7 , Antígenos Comuns de Leucócito , Encéfalo
19.
Strahlenther Onkol ; 199(12): 1164-1172, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36602569

RESUMO

Osteoarthritis (OA) is one of the most common and socioeconomically relevant diseases, with rising incidence and prevalence especially with regard to an ageing population in the Western world. Over the decades, the scientific perception of OA has shifted from a simple degeneration of cartilage and bone to a multifactorial disease involving various cell types and immunomodulatory factors. Despite a wide range of conventional treatment modalities available, a significant proportion of patients remain treatment refractory. Low-dose radiotherapy (LDRT) has been used for decades in the treatment of patients with inflammatory and/or degenerative diseases and has proven a viable option even in cohorts of patients with a rather poor prognosis. While its justification mainly derives from a vast body of empirical evidence, prospective randomized trials have until now failed to prove the effectiveness of LDRT. Nevertheless, over the decades, adaptions of LDRT treatment modalities have evolved using lower dosages with establishment of different treatment schedules for which definitive clinical proof is still pending. Preclinical research has revealed that the immune system is modulated by LDRT and very recently osteoimmunological mechanisms have been described. Future studies and investigations further elucidating the underlying mechanisms are an essential key to clarify the optimal patient stratification and treatment procedure, considering the patients' inflammatory status, age, and sex. The present review aims not only to present clinical and preclinical knowledge about the mechanistic and beneficial effects of LDRT, but also to emphasize topics that will need to be addressed in future studies. Further, a concise overview of the current status of the underlying radiobiological knowledge of LDRT for clinicians is given, while seeking to stimulate further translational research.


Assuntos
Osteoartrite , Humanos , Dosagem Radioterapêutica , Estudos Prospectivos , Osteoartrite/radioterapia , Prognóstico , Previsões
20.
Neoplasia ; 37: 100877, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696838

RESUMO

Melanoma is the most aggressive skin malignancy with high morbidity. Anti-programmed cell death protein 1 (PD-1) monotherapy has been applied in metastatic melanoma. However, still most of the patients do not respond to anti-PD-1 and the availability of the present approved biomarkers therefore is limited. Here we combined the transcriptomic and clinical data of 163 advanced melanoma patients receiving anti-PD-1 from NIH Melanoma Genome Sequencing Project (phs000452, 122 patients) as the training and internal validation cohort, and Melanoma Institute Australia cohort (PRJEB23709, 41 patients) as the external validation cohort, respectively. Circular RNAs (circRNAs) are an evolutionarily conserved novel class of noncoding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome and were used based on RNAseq data for our analyses. 74,243 circular RNAs (circRNAs) were identified with NCLscan and CIRCexplorer2. Thereof, 70 circRNAs significantly associated with progression-free survival and overall survival. Further, a prognostic circRNAs signature consisting of HSA_CIRCpedia_1497, HSA_CIRCpedia_12559, HSA_CIRCpedia_43640, HSA_CIRCpedia_43070, and HSA_CIRCpedia_21660 could be determined with LASSO regression. This signature was a prognostic factor of overall survival and progression-free survival among the analyzed advanced melanoma patients. The concordance indexes (C-index of OStraining: 0.61, C-index of PFStraining: 0.68) also confirmed its credibility and accuracy. First enrichment analysis indicated that immune response and pathways related to tumor immune microenvironment were enriched. In conclusion, we succeeded to construct and validate novel prognostic circRNAs signature for advanced melanoma patients treated with anti-PD-1 immunotherapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Biomarcadores , Biomarcadores Tumorais , Melanoma/patologia , Prognóstico , RNA Circular , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...