Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
N Biotechnol ; 76: 13-22, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37054948

RESUMO

This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Sistema Livre de Células , Pandemias/prevenção & controle , SARS-CoV-2
2.
bioRxiv ; 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36597541

RESUMO

This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced with consistent purity and potency in less than 24 hours. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo . The proposed production process is efficient and can be readily scaled up and deployed anywhere in the world where a viral pathogen might emerge. The current emergence of viral variants has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.

3.
Biotechnol Bioeng ; 118(8): 3029-3036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964171

RESUMO

Airborne spread of coronavirus disease 2019 (COVID-19) by infectious aerosol is all but certain. However, easily implemented approaches to assess the actual environmental threat are currently unavailable. We present a simple approach with the potential to rapidly provide information about the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the atmosphere at any location. We used a portable dehumidifier as a readily available and affordable tool to collect airborne virus in the condensate. The dehumidifiers were deployed in selected locations of a hospital ward with patients reporting flu-like symptoms which could possibly be due to COVID-19 over three separate periods of one week. Samples were analyzed frequently for both virus envelope protein and SARS-CoV-2 RNA. In several samples across separate deployments, condensate from dehumidifiers tested positive for the presence of SARS-CoV-2 antigens as confirmed using two independent assays. RNA was detected, but not attributable to SARS-CoV-2. We verified the ability of the dehumidifier to rapidly collect aerosolized sodium chloride. Our results point to a facile pool testing method to sample air in any location in the world and assess the presence and concentration of an infectious agent to obtain quantitative risk assessment of exposure, designate zones as "hot spots" and minimize the need for individual testing which may often be time consuming, expensive, and laborious.


Assuntos
COVID-19/genética , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética
4.
Biotechnol Prog ; 36(3): e2970, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31989790

RESUMO

Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand. Here, we report on technology application for on-demand biologics manufacturing (Bio-MOD) that can produce safe and effective biologics from cell-free systems at the point of care without the current challenges of long-term storage and cold-chain delivery. The objective of the current study is to establish proof-of-concept safety and efficacy of Bio-MOD-manufactured granulocyte colony-stimulating factor (G-CSF) in a mouse model of total body irradiation at a dose estimated to induce 30% lethality within the first 30 days postexposure. To illustrate on-demand Bio-MOD production feasibility, histidine-tagged G-CSF was manufactured daily under good manufacturing practice-like conditions prior to administration over a 16-day period. Bio-MOD-manufactured G-CSF improved 30-day survival when compared with saline alone (p = .073). In addition to accelerating recovery from neutropenia, the platelet and hemoglobin nadirs were significantly higher in G-CSF-treated animals compared with saline-treated animals (p < .05). The results of this study demonstrate the feasibility of consistently manufacturing safe and effective on-demand biologics suitable for real-time release.


Assuntos
Produtos Biológicos/farmacologia , Armazenamento de Medicamentos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neutropenia/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Sistema Livre de Células , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/biossíntese , Hemoglobinas/efeitos dos fármacos , Histidina/biossíntese , Histidina/química , Humanos , Camundongos , Neutropenia/sangue , Neutropenia/etiologia , Neutropenia/patologia , Irradiação Corporal Total/efeitos adversos
5.
Biotechnol Bioeng ; 116(4): 870-881, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450616

RESUMO

Biopharmaceutical separations require tremendous amounts of optimization to achieve acceptable product purity. Typically, large volumes of reagents and biological materials are needed for testing different parameters, thus adding to the expense of biopharmaceutical process development. This study demonstrates a versatile and customizable microscale column (µCol) for biopharmaceutical separations using immobilized metal affinity chromatography (IMAC) as an example application to identify key parameters. µCols have excellent precision, efficiency, and reproducibility, can accommodate any affinity, ion-exchange or size-exclusion-based resin and are compatible with any high-performance liquid chromatography (HPLC) system. µCols reduce reagent amounts, provide comparable purification performance and high-throughput, and are easy to automate compared with current conventional resin columns. We provide a detailed description of the fabrication methods, resin packing methods, and µCol validation experiments using a conventional HPLC system. Finite element modeling using COMSOL Multiphysics was used to validate the experimental performance of the µCols. In this study, µCols were used for improving the purification achieved for granulocyte colony stimulating factor (G-CSF) expressed using a cell-free CHO in vitro translation (IVT) system and were compared to a conventional 1 ml IMAC column. Experimental data revealed comparable purity with a 10-fold reduction in the amount of buffer, resin, and purification time for the µCols compared with conventional columns for similar protein yields.


Assuntos
Cromatografia de Afinidade/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Algoritmos , Animais , Células CHO , Cromatografia de Afinidade/economia , Cromatografia Líquida de Alta Pressão/economia , Cricetulus , Desenho de Equipamento
6.
J Chromatogr A ; 1568: 108-122, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30072232

RESUMO

Chromatofocusing is investigated as an alternative to protein A chromatography for the initial capture step in a purification process for several monoclonal antibodies and antibody fusion products. For comparison, this work also investigates the use of ion-exchange chromatography with either pH or salt gradient elution as additional alternatives to protein A chromatography. The specific conditions employed for the capture step for the case of chromatofocusing were selected on a rational basis using a computer-aided design method implemented in the form of a Microsoft Excel spreadsheet. Alternative operating conditions were compared experimentally with regard to the product yield achieved as well as the removal of total host cell proteins (HCPs) and of a specific HCP major component. Results from this study indicate that both chromatofocusing and ion-exchange chromatography are useful alternatives to a protein A chromatography capture step in many practical cases. This is especially true for the case of chromatofocusing when it is possible to exploit the ability of the method to create complex gradient shapes that are self-forming inside the column and to simultaneous focus and separate proteins inside the column.


Assuntos
Anticorpos Monoclonais/análise , Cromatografia Líquida de Alta Pressão/métodos , Animais , Anticorpos Monoclonais/química , Soluções Tampão , Células CHO , Técnicas de Cultura de Células , Cromatografia por Troca Iônica , Cricetulus , Concentração de Íons de Hidrogênio , Sais/química , Soluções , Proteína Estafilocócica A/imunologia
7.
Biotechnol Bioeng ; 115(5): 1253-1264, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384203

RESUMO

Cell-Free Protein Synthesis (CFPS) offers many advantages for the production of recombinant therapeutic proteins using the CHO cell-free system. However, many complex proteins are still difficult to express using this method. To investigate the current bottlenecks in cell-free glycoprotein production, we chose erythropoietin (40% glycosylated), an essential endogenous hormone which stimulates the development of red blood cells. Here, we report the production of recombinant erythropoietin (EPO) using CHO cell-free system. Using this method, EPO was expressed and purified with a twofold increase in yield when the cell-free reaction was supplemented with CHO microsomes. The protein was purified to near homogeneity using an ion-metal affinity column. We were able to analyze the expressed and purified products (glycosylated cell-free EPO runs at 25-28 kDa, and unglycosylated protein runs at 20 kDa on an SDS-PAGE), identifying the presence of glycan moieties by PNGase shift assay. The purified protein was predicted to have ∼2,300 IU in vitro activity. Additionally, we tested the presence and absence of sugars on the cell-free EPO using a lectin-based assay system. The results obtained in this study indicate that microsomes augmented in vitro production of the glycoprotein is useful for the rapid production of single doses of a therapeutic glycoprotein drug and to rapidly screen glycoprotein constructs in the development of these types of drugs. CFPS is useful for implementing a lectin-based method for rapid screening and detection of glycan moieties, which is a critical quality attribute in the industrial production of therapeutic glycoproteins.


Assuntos
Biotecnologia/métodos , Sistema Livre de Células , Eritropoetina/metabolismo , Microssomos/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Cromatografia de Afinidade , Cricetulus , Eletroforese em Gel de Poliacrilamida , Eritropoetina/química , Eritropoetina/genética , Eritropoetina/isolamento & purificação , Expressão Gênica , Glicosilação , Humanos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
8.
Biotechnol Bioeng ; 115(1): 92-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843001

RESUMO

The use of cell-free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell-free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell-free system using instrumented mini-bioreactors for highly reproducible protein production. We achieved recombinant protein production (∼600 µg/ml of tGFP and 500 µg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell-free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag-free self-cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose-level production of therapeutic proteins at the point-of-care.


Assuntos
Sistema Livre de Células , Misturas Complexas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Estreptoquinase/biossíntese , Estreptoquinase/isolamento & purificação , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Recombinantes/genética , Estreptoquinase/genética
9.
Nat Biomed Eng ; 2(9): 675-686, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-31015674

RESUMO

Manufacturing technologies for biologics rely on large, centralized, good-manufacturing-practice (GMP) production facilities and on a cumbersome product-distribution network. Here, we report the development of an automated and portable medicines-on-demand device that enables consistent, small-scale GMP manufacturing of therapeutic-grade biologics on a timescale of hours. The device couples the in vitro translation of target proteins from ribosomal DNA, using extracts from reconstituted lyophilized Chinese hamster ovary cells, with the continuous purification of the proteins. We used the device to reproducibly manufacture His-tagged granulocyte-colony stimulating factor, erythropoietin, glucose-binding protein and diphtheria toxoid DT5. Medicines-on-demand technology may enable the rapid manufacturing of biologics at the point of care.


Assuntos
Produtos Biológicos/química , Proteínas/química , Animais , Células CHO , Linhagem Celular , Cricetulus , DNA Ribossômico/química , Eritropoetina/química , Fator Estimulador de Colônias de Granulócitos/química , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
10.
Biotechnol Bioeng ; 114(7): 1478-1486, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266026

RESUMO

Cell-free protein synthesis (CFPS) is an ideal platform for rapid and convenient protein production. However, bioreactor design remains a critical consideration in optimizing protein expression. Using turbo green fluorescent protein (tGFP) as a model, we tracked small molecule components in a Chinese Hamster Ovary (CHO) CFPS system to optimize protein production. Here, three bioreactors in continuous-exchange cell-free (CECF) format were characterized. A GFP optical sensor was built to monitor the product in real-time. Mass transfer of important substrate and by-product components such as nucleoside triphosphates (NTPs), creatine, and inorganic phosphate (Pi) across a 10-kDa MWCO cellulose membrane was calculated. The highest efficiency measured by tGFP yields were found in a microdialysis device configuration; while a negative effect on yield was observed due to limited mass transfer of NTPs in a dialysis cup configuration. In 24-well plate high-throughput CECF format, addition of up to 40 mM creatine phosphate in the system increased yields by up to ∼60% relative to controls. Direct ATP addition, as opposed to creatine phosphate addition, negatively affected the expression. Pi addition of up to 30 mM to the expression significantly reduced yields by over ∼40% relative to controls. Overall, data presented in this report serves as a valuable reference to optimize the CHO CFPS system for next-generation bioprocessing. Biotechnol. Bioeng. 2017;114: 1478-1486. © 2017 Wiley Periodicals, Inc.


Assuntos
Células CHO/metabolismo , Sistema Livre de Células/metabolismo , Biossíntese de Proteínas/fisiologia , Engenharia de Proteínas/instrumentação , Engenharia de Proteínas/métodos , Animais , Células CHO/química , Cricetulus , Controle de Qualidade
11.
Appl Biochem Biotechnol ; 183(1): 318-331, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28281181

RESUMO

Viral clearance is a critical aspect of biopharmaceutical manufacturing process validation. To determine the viral clearance efficacy of downstream chromatography and filtration steps, live viral "spiking" studies are conducted with model mammalian viruses such as minute virus of mice (MVM). However, due to biosafety considerations, spiking studies are costly and typically conducted in specialized facilities. In this work, we introduce the concept of utilizing a non-infectious MVM virus-like particle (MVM-VLP) as an economical surrogate for live MVM during process development and characterization. Through transmission electron microscopy, size exclusion chromatography with multi-angle light scattering, chromatofocusing, and a novel solute surface hydrophobicity assay, we examined and compared the size, surface charge, and hydrophobic properties of MVM and MVM-VLP. The results revealed that MVM and MVM-VLP exhibited nearly identical physicochemical properties, indicating the potential utility of MVM-VLP as an accurate and economical surrogate to live MVM during chromatography and filtration process development and characterization studies.


Assuntos
Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/isolamento & purificação , Animais , Camundongos , Vírus Miúdo do Camundongo/ultraestrutura
12.
Biotechnol Bioeng ; 114(1): 154-162, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425244

RESUMO

Purification processes for monoclonal Immunoglobulin G (IgG) typically employ protein A chromatography as a capture step to remove most of the impurities. One major concern of the post-protein A chromatography processes is the co-elution of some of the host cell proteins (HCPs) with IgG in the capture step. In this work, a novel method for IgG elution in protein A chromatography that reduces the co-elution of HCPs is presented where a two-step pH gradient is self-formed inside a protein A chromatography column. The complexities involved in using an internally produced pH gradient in a protein A chromatography column employing adsorbed buffering species are discussed though equation-based modeling. Under the conditions employed, ELISA assays show a 60% reduction in the HCPs co-eluting with the IgG fraction when using the method as compared to conventional protein A elution without affecting the IgG yield. Evidence is also obtained which indicates that the amount of leached protein A present in free solution in the purified product is reduced by the new method. Biotechnol. Bioeng. 2017;114: 154-162. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Proteína Estafilocócica A/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Contaminação de Medicamentos/prevenção & controle , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Camundongos , Modelos Moleculares , Proteínas/química , Proteína Estafilocócica A/química
13.
J Chromatogr A ; 1387: 53-9, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25702080

RESUMO

The chromatographic separation of two proteins into a displacement train of two adjoined rectangular bands was accomplished using a novel method for hydrophobic charge induction chromatography (HCIC) which employs a self-sharpening pH front as the displacer. This method exploits the fact that protein elution in HCIC is promoted by a pH change, but is relatively independent of salt effects, so that a retained pH front can be used in place of a traditional displacer in displacement chromatography. The retained pH front was produced using the two adsorbed buffering species tricine and acetic acid. The separation of lysozyme and α-chymotrypsinogen A into adjoined, rectangular bands was accomplished with overall recoveries based on the total mass injected greater than 90 and 70%, respectively. The addition of urea to the buffer system increased the sharpness of the pH front by 36% while the yields of lysozyme and α-chymotrypsinogen A based on the total mass eluted increased from 76% to 99% and from 37% to 85%, respectively, when the purities of both proteins in their product fractions were fixed at 85%. The results demonstrate that the method developed in this study is a useful variant of HCIC and is also a useful alternative to other displacement chromatography methods.


Assuntos
Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Extração Líquido-Líquido/métodos , Proteínas/química , Adsorção , Quimotripsinogênio/análise , Quimotripsinogênio/isolamento & purificação , Concentração de Íons de Hidrogênio , Muramidase/análise , Muramidase/isolamento & purificação , Proteínas/isolamento & purificação , Força Próton-Motriz
14.
J Chromatogr A ; 1323: 57-65, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24296295

RESUMO

Recent studies reported in the literature using mixed-mode chromatography (MMC) column packings have shown that multiple modes of interactions between the column packing and proteins can be usefully exploited to yield excellent resolution as well as salt-tolerant adsorption of the target protein. In this study, a mixed-mode separation method using commercially available column packings was explored which combines the techniques of hydrophobic-interaction chromatography and chromatofocusing. Two different column packings, one based on mercapto-ethyl-pyridine (MEP) and the other based on hexylamine (HEA) were investigated with regard to their ability to separate proteins when using internally generated, retained pH gradients. The effects of added salt and urea on the behavior of the retained pH gradient and the protein separation achieved when using MMC column packings for chromatofocusing were also investigated. Numerical simulations using methods developed in previous work were shown to agree with experimental results when using reasonable physical parameters. These numerical simulations were also shown to be a useful qualitative method to select the compositions of the starting and elution buffers in order to achieve desired shapes for the pH and ionic strength gradients. The use of the method to fractionate blood serum was explored as a prototype example application.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Adsorção , Animais , Proteínas Sanguíneas/química , Soluções Tampão , Cromatografia/economia , Cromatografia/instrumentação , Cromatografia/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Focalização Isoelétrica/economia , Focalização Isoelétrica/instrumentação , Focalização Isoelétrica/métodos , Concentração Osmolar , Coelhos , Sais/química , Soro/química , Ureia/química
15.
J Chromatogr A ; 1283: 89-97, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23428023

RESUMO

The use of either a polyampholyte buffer or a simple buffer system for the high-performance cation-exchange chromatofocusing of monoclonal antibodies is demonstrated for the case where the pH gradient is produced entirely inside the column and with no external mixing of buffers. The simple buffer system used was composed of two buffering species, one which becomes adsorbed onto the column packing and one which does not adsorb, together with an adsorbed ion that does not participate in acid-base equilibrium. The method which employs the simple buffer system is capable of producing a gradual pH gradient in the neutral to acidic pH range that can be adjusted by proper selection of the starting and ending pH values for the gradient as well as the buffering species concentration, pKa, and molecular size. By using this approach, variants of representative monoclonal antibodies with isoelectric points of 7.0 or less were separated with high resolution so that the approach can serve as a complementary alternative to isoelectric focusing for characterizing a monoclonal antibody based on differences in the isoelectric points of the variants present. Because the simple buffer system used eliminates the use of polyampholytes, the method is suitable for antibody heterogeneity analysis coupled with mass spectrometry. The method can also be used at the preparative scale to collect highly purified isoelectric variants of an antibody for further study. To illustrate this, a single isoelectric point variant of a monoclonal antibody was collected and used for a stability study under forced deamidation conditions.


Assuntos
Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Soluções Tampão , Cátions/química , Ácido Cítrico/química , Simulação por Computador , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Isoformas de Proteínas , Estabilidade Proteica , Hidróxido de Sódio/química
16.
J Chromatogr A ; 1217(40): 6214-29, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20801454

RESUMO

An experimental and theoretical study was conducted of the column characterization technique in which plate heights determined using the conventional pulse-response method are compared with those determined using a bi-directional method where an eluite sample is introduced into one end of a chromatographic column and elution occurs at the same end after the flow direction is reversed inside the column. Experiments are presented for a micropellicular HPLC column before and after its performance has been degraded by repeated sample injections, for a low-pressure column containing nonporous glass particles, and for an HPLC column containing particles with 300 A pores. The results obtained are interpreted in terms of several different theories which apply in various Fourier number ranges. It was shown that the transcolumn contribution to convective dispersion in a chromatographic column is largely responsible for the difference observed between conventional and bi-directional plate-height measurements and that a collocation method can be employed to develop a useful analytical expression for this contribution.


Assuntos
Cromatografia Líquida/métodos , Modelos Teóricos , Reologia/métodos , Algoritmos , Vidro , Tamanho da Partícula , Porosidade
17.
Biotechnol Bioeng ; 104(2): 371-80, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19575414

RESUMO

During production of therapeutic monoclonal antibodies (mAbs) in mammalian cell culture, it is important to ensure that viral impurities and potential viral contaminants will be removed during downstream purification. Anion exchange chromatography provides a high degree of virus removal from mAb feedstocks, but the mechanism by which this is achieved has not been characterized. In this work, we have investigated the binding of three viruses to Q sepharose fast flow (QSFF) resin to determine the degree to which electrostatic interactions are responsible for viral clearance by this process. We first used a chromatofocusing technique to determine the isoelectric points of the viruses and established that they are negatively charged under standard QSFF conditions. We then determined that virus removal by this chromatography resin is strongly disrupted by the presence of high salt concentrations or by the absence of the positively charged Q ligand, indicating that binding of the virus to the resin is primarily due to electrostatic forces, and that any non-electrostatic interactions which may be present are not sufficient to provide virus removal. Finally, we determined the binding profile of a virus in a QSFF column after a viral clearance process. These data indicate that virus particles generally behave similarly to proteins, but they also illustrate the high degree of performance necessary to achieve several logs of virus reduction. Overall, this mechanistic understanding of an important viral clearance process provides the foundation for the development of science-based process validation strategies to ensure viral safety of biotechnology products.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Cromatografia em Agarose/métodos , Meios de Cultura/química , Ligação Viral , Vírus/isolamento & purificação , Animais , Células CHO , Cricetinae , Cricetulus
18.
J Chromatogr A ; 1216(6): 977-84, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19128804

RESUMO

Part I of this study investigated the theory and basic characteristics of "serial displacement chromatofocusing" (SDC). In Part II of this study, SDC is applied to two prototype applications which have potential uses in proteomics and related areas involving the analysis of complex analyte mixtures. In the first application, SDC was used as a prefractionation method prior to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate a human prostate cancer cell lysate. It was observed that the resolution achieved in narrow-pI-range 2D-PAGE was improved when using SDC prefractionation, so that SDC may be useful as a low-cost, high-speed, and highly scalable alternative to electrophoretic prefractionation methods for 2D-PAGE. The second application involves the use of SDC as the first dimension, and reversed-phase chromatography as the second dimension, to produce a novel, fully automated, two-dimensional high-performance liquid chromatography technique. The method was shown to have performance advantages over one-dimensional reversed-phase chromatography for peptide separations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel Bidimensional/métodos , Proteômica/métodos , Carcinoma/química , Desenho Assistido por Computador , Desenho de Equipamento , Humanos , Linfonodos/química , Masculino , Modelos Químicos , Peptídeos/isolamento & purificação , Neoplasias da Próstata/química , Proteínas/isolamento & purificação , Força Próton-Motriz , Reprodutibilidade dos Testes
19.
J Chromatogr A ; 1216(6): 967-76, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19128805

RESUMO

The technique of "serial displacement chromatofocusing" (SDC) is investigated both theoretically and experimentally with model mixtures of proteins and peptides. The method employs a multistep, retained pH gradient formed using adsorbed buffering species to produce a series of discrete effluent fractions. Each of these fractions may contain several displaced protein bands under conditions of sufficient mass overloading, so that several displacement trains of adjoined bands can be produced in a single chromatographic run. Numerical simulations and experimental results showed selective concentration effects for minor components in a fraction when the feed amount was sufficient large. A computer-aided design method was developed to facilitate the use of the method and was applied to both anion- and cation-exchange column packings. Good agreement was achieved between the designed pH gradients and experimental results. The characteristics of SDC were also explored in terms of its loading capacity, scalability, repeatability, recovery, and differentiation of proteins between their true and apparent isoelectric point values.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel Bidimensional/métodos , Modelos Químicos , Força Próton-Motriz , Adsorção , Simulação por Computador , Desenho Assistido por Computador , Concentração de Íons de Hidrogênio , Peptídeos/química , Proteínas/química
20.
J Chromatogr A ; 1207(1-2): 110-21, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18778829

RESUMO

The technique of chromatofocusing was applied to the characterization and purification of three bacteriophages that are routinely used for testing virus filters: phiX174, PR772, and PP7. Chemically well-defined eluent buffers were used, instead of the more commonly used chromatofocusing polyampholyte buffers. Chromatographic column packings were selected to minimize band broadening by confining bacteriophage adsorption solely to the exterior particle surface. Under the conditions used it was determined that bacteriophages could be made to focus into narrow bands in a retained pH gradient with recoveries of live phage that ranged from 15 to nearly 100% as determined by a plaque-forming assay. Retention times and apparent isoelectric point data were obtained for samples consisting either of purified bacteriophage, or samples consisting of crude preparations of bacteriophages containing host cell impurities. Isoelectric point estimates were obtained using modified, previously described models. The results obtained suggest that chromatofocusing is a simple and rapid method for obtaining approximate isoelectric points for bacteriophages and probably other types of viruses. It is also likely a useful method for purifying these materials.


Assuntos
Bacteriófagos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Focalização Isoelétrica/métodos , Ponto Isoelétrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...