Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38070177

RESUMO

Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.


Assuntos
Fagus , Picea , Picea/fisiologia , Fagus/fisiologia , Ecossistema , Água , Florestas , Árvores/fisiologia , Solo/química , Isótopos
2.
J Orthop Res ; 42(5): 1134-1144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37986646

RESUMO

Meniscal tearing can increase the contact pressure between the tibia and femur by causing gapping of torn meniscus tissue. The aim of this study was to quantify gapping behavior of radial and longitudinal tears and their impact on peak contact pressure and mean contact area. Twelve porcine knee joints underwent unicondylar, convertible osteotomy for exact tear application and consecutive suturing. Six tantalum marker beads were positioned along meniscus tears. The joints were preloaded with sinusoidal loading cycles ranging between 0 N and 350 N. Peak load was held constant and two synchronized Roentgen stereophotogrammetric analysis x-ray images were obtained to evaluate gapping, peak contact pressure and mean contact area in the native, torn and repaired states. There was no change in gapping or peak contact pressure in longitudinal tear. By contrast, the radial tear led to a significant gapping when compared to the native state, while the inside-out suture was able to restore gapping in parts of the meniscus. An increase in contact pressure after radial tear was detected, which was again normalized after suturing. The most important finding of the study is that longitudinal tears did not gap under pure axial loading, whereas radial tears tended to separate the tear interfaces.


Assuntos
Menisco , Lesões do Menisco Tibial , Animais , Suínos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Lesões do Menisco Tibial/cirurgia , Fenômenos Biomecânicos , Articulação do Joelho/cirurgia , Ruptura
3.
Ecol Evol ; 12(2): e8534, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222947

RESUMO

One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity-diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1-ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity-diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.

4.
Ecol Evol ; 10(3): 1489-1509, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076529

RESUMO

Retention forestry, which retains a portion of the original stand at the time of harvesting to maintain continuity of structural and compositional diversity, has been originally developed to mitigate the impacts of clear-cutting. Retention of habitat trees and deadwood has since become common practice also in continuous-cover forests of Central Europe. While the use of retention in these forests is plausible, the evidence base for its application is lacking, trade-offs have not been quantified, it is not clear what support it receives from forest owners and other stakeholders and how it is best integrated into forest management practices. The Research Training Group ConFoBi (Conservation of Forest Biodiversity in Multiple-use Landscapes of Central Europe) focusses on the effectiveness of retention forestry, combining ecological studies on forest biodiversity with social and economic studies of biodiversity conservation across multiple spatial scales. The aim of ConFoBi is to assess whether and how structural retention measures are appropriate for the conservation of forest biodiversity in uneven-aged and selectively harvested continuous-cover forests of temperate Europe. The study design is based on a pool of 135 plots (1 ha) distributed along gradients of forest connectivity and structure. The main objectives are (a) to investigate the effects of structural elements and landscape context on multiple taxa, including different trophic and functional groups, to evaluate the effectiveness of retention practices for biodiversity conservation; (b) to analyze how forest biodiversity conservation is perceived and practiced, and what costs and benefits it creates; and (c) to identify how biodiversity conservation can be effectively integrated in multi-functional forest management. ConFoBi will quantify retention levels required across the landscape, as well as the socio-economic prerequisites for their implementation by forest owners and managers. ConFoBi's research results will provide an evidence base for integrating biodiversity conservation into forest management in temperate forests.

5.
Ambio ; 49(1): 85-97, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31055795

RESUMO

Retention forestry implies that biological legacies like dead and living trees are deliberately selected and retained beyond harvesting cycles to benefit biodiversity and ecosystem functioning. This model has been applied for several decades in even-aged, clearcutting (CC) systems but less so in uneven-aged, continuous-cover forestry (CCF). We provide an overview of retention in CCF in temperate regions of Europe, currently largely focused on habitat trees and dead wood. The relevance of current meta-analyses and many other studies on retention in CC is limited since they emphasize larger patches in open surroundings. Therefore, we reflect here on the ecological foundations and socio-economic frameworks of retention approaches in CCF, and highlight several areas with development potential for the future. Conclusions from this perspective paper, based on both research and current practice on several continents, although highlighting Europe, are also relevant to other temperate regions of the world using continuous-cover forest management approaches.


Assuntos
Ecossistema , Agricultura Florestal , Biodiversidade , Conservação dos Recursos Naturais , Europa (Continente) , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...