Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882794

RESUMO

Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.

2.
Nat Commun ; 8: 15603, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28537266

RESUMO

Low availability of Fe significantly limits crop yields in many parts of the world. However, it is largely unknown which genes and alleles adjust plant growth in Fe limited environments. Using natural variation of a geographically restricted panel of Arabidopsis thaliana accessions, we identify allelic variation at the FRO2 locus associated with root length under iron deficiency. We show that non-coding sequence variation at the FRO2 locus leads to variation of FRO2 transcript levels, as well as ferric chelate reductase activity, and is causal for a portion of the observed root length variation. These FRO2 allele dependent differences are coupled with altered seedling phenotypes grown on iron-limited soil. Overall, we show that these natural genetic variants of FRO2 tune its expression. These variants might be useful for improvement of agronomically relevant species under specific environmental conditions, such as in podzols or calcareous soils.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , FMN Redutase/genética , Deficiências de Ferro , Raízes de Plantas/crescimento & desenvolvimento , Alelos , Produção Agrícola/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA