Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(20): 8885-8891, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576583

RESUMO

Synthetic methods that edit soft polymer backbones are critical technologies for tailoring the structures and properties of macromolecules. Developing strategies that leverage underexplored reaction manifolds are vital for accessing new chemical (and functional) space in soft materials. Here, we report a mild electrochemical approach that enables both degradation and functionalization of synthetic polymers. We found that bulk electrolysis (under either homogeneous or heterogeneous conditions) promoted facile, chemoselective chain scission in a variety of olefin-containing materials. Polymer degradation could also be coupled with functionalization (e.g., azidation) to afford new species that could serve as macromonomers.


Assuntos
Alcenos , Polímeros , Alcenos/química , Polímeros/química
2.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579536

RESUMO

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Gases , Tecnologia de Sensoriamento Remoto
3.
Atmos Chem Phys ; 22(21): 14037-14058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37476609

RESUMO

The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68°38' N, 149°36' W), in the Alaskan Arctic tundra during May-June 2019. We employ a custom nested grid version of the GEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature version 2.1) biogenic emissions for Alaska at 0.25° × 0.3125° resolution, to interpret the observations in terms of their constraints on BVOC emissions, total reactive organic carbon (ROC) composition, and calculated OH reactivity (OHr) in this environment. We find total ambient mole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s-1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s-1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra.

4.
Elementa (Wash D C) ; 9(1): 1-27, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34926709

RESUMO

The Korea-United States Air Quality (KORUS-AQ) field study was conducted during May-June 2016. The effort was jointly sponsored by the National Institute of Environmental Research of South Korea and the National Aeronautics and Space Administration of the United States. KORUS-AQ offered an unprecedented, multi-perspective view of air quality conditions in South Korea by employing observations from three aircraft, an extensive ground-based network, and three ships along with an array of air quality forecast models. Information gathered during the study is contributing to an improved understanding of the factors controlling air quality in South Korea. The study also provided a valuable test bed for future air quality-observing strategies involving geostationary satellite instruments being launched by both countries to examine air quality throughout the day over Asia and North America. This article presents details on the KORUS-AQ observational assets, study execution, data products, and air quality conditions observed during the study. High-level findings from companion papers in this special issue are also summarized and discussed in relation to the factors controlling fine particle and ozone pollution, current emissions and source apportionment, and expectations for the role of satellite observations in the future. Resulting policy recommendations and advice regarding plans going forward are summarized. These results provide an important update to early feedback previously provided in a Rapid Science Synthesis Report produced for South Korean policy makers in 2017 and form the basis for the Final Science Synthesis Report delivered in 2020.

5.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878847

RESUMO

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

6.
ACS Macro Lett ; 9(4): 595-599, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648492

RESUMO

Biomass-derived polymers are emerging as critically needed alternatives to their petrochemical counterparts. Terpenes, which are among the most abundant natural products, represent particularly fertile chemical space for monomer development (given their inherent structural complexity). Here, we present the living vinyl-addition polymerization of ß-pinadiene (the cumulated congener of ß-pinene) at room temperature. Employing [(π-allyl)NiOCOCF3]2 as a catalyst afforded the desired polymers with good control over molecular weight and dispersity. Interestingly, the bicyclic pinane core was retained in the isolated materials (which starkly contrasts prototypical pinene polymerizations). Moreover, the reported materials exhibited impressive thermal stability (Td = 294 °C) and high glass transition temperatures (Tg = 160 °C). As the polymerization of terpene-derived cumulenes can afford scaffolds that defy current synthetic logic, we anticipate our work will unlock additional avenues for sustainable polymer development.

7.
Atmos Chem Phys ; 19(14): 9097-9123, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33688334

RESUMO

We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities. Methane oxidation is a 2x larger source of nonmethane VOCs (via production of formaldehyde and methyl hydroperoxide) over North America in the model than are anthropogenic emissions. However, anthropogenic VOCs account for over half of the ambient VOC loading over the majority of the region owing to their longer aggregate lifetime. Fires can be a significant VOC source episodically but are small on average. In the planetary boundary layer (PBL), the model exhibits skill in capturing observed variability in total VOC abundance (R 2 = 0:36) and reactivity (R 2 = 0:54). The same is not true in the free troposphere (FT), where skill is low and there is a persistent low model bias (~ 60 %), with most (27 of 34) model VOCs underestimated by more than a factor of 2. A comparison of PBL: FT concentration ratios over the southeastern US points to a misrepresentation of PBL ventilation as a contributor to these model FT biases. We also find that a relatively small number of VOCs (acetone, methanol, ethane, acetaldehyde, formaldehyde, isoprene C oxidation products, methyl hydroperoxide) drive a large fraction of total ambient VOC reactivity and associated model biases; research to improve understanding of their budgets is thus warranted. A source tracer analysis suggests a current overestimate of biogenic sources for hydroxyacetone, methyl ethyl ketone and glyoxal, an underestimate of biogenic formic acid sources, and an underestimate of peroxyacetic acid production across biogenic and anthropogenic precursors. Future work to improve model representations of vertical transport and to address the VOC biases discussed are needed to advance predictions of ozone and SOA formation.

8.
J Geophys Res Atmos ; 123(9): 4727-4745, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30245954

RESUMO

The San Joaquin Valley (SJV) of California experiences high concentrations of particulate matter NH4NO3 during episodes of meteorological stagnation in winter. A rich data set of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign in SJV in January and February 2013. Here NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model, diagnostic model evaluation is performed using the DISCOVER-AQ data set, and integrated reaction rate analysis is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-hr average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agree well with measurements in Fresno, although partitioning of total nitrate to HNO3 is sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and additional work on the spatial allocation of NH3 emissions is warranted. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease.

9.
J Geophys Res Atmos ; 123(14): 7594-7614, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32802698

RESUMO

Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed-phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high-resolution (dx ≤ 3 km) WRF-Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF-Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low-background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF-Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.

10.
Atmos Chem Phys ; 11: 4943-4961, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33424951

RESUMO

The Korea-United States Air Quality Study (KORUS-AQ) conducted during May-June 2016 offered the first opportunity to evaluate direct-sun observations of formaldehyde (HCHO) total column densities with improved Pandora spectrometer instruments. The measurements highlighted in this work were conducted both in the Seoul megacity area at the Olympic Park site (37.5232° N, 27.1260° E; 26 ma.s.l.) and at a nearby rural site downwind of the city at the Mount Taehwa research forest site (37.3123° N, 127.3106° E; 160ma.s.l.). Evaluation of these measurements was made possible by concurrent ground-based in situ observations of HCHO at both sites as well as overflight by the NASA DC-8 research aircraft. The flights provided in situ measurements of HCHO to characterize its vertical distribution in the lower troposphere (0-5km). Diurnal variation in HCHO total column densities followed the same pattern at both sites, with the minimum daily values typically observed between 6:00 and 7:00 local time, gradually increasing to a maximum between 13:00 and 17:00 before decreasing into the evening. Pandora vertical column densities were compared with those derived from the DC-8 HCHO in situ measured profiles augmented with in situ surface concentrations below the lowest altitude of the DC-8 in proximity to the ground sites. A comparison between 49 column densities measured by Pandora vs. aircraft-integrated in situ data showed that Pandora values were larger by 16% with a constant offset of 0.22DU (Dobson units; R 2 = 0.68). Pandora HCHO columns were also compared with columns calculated from the surface in situ measurements over Olympic Park by assuming a well-mixed lower atmosphere up to a ceilometer-measured mixed-layer height (MLH) and various assumptions about the small residual HCHO amounts in the free troposphere up to the tropopause. The best comparison (slope = 1.03±0.03; intercept = 0.29±0.02DU; and R 2 = 0.78±0.02) was achieved assuming equal mixing within ceilometer-measured MLH combined with an exponential profile shape. These results suggest that diurnal changes in HCHO surface concentrations can be reasonably estimated from the Pandora total column and information on the mixed-layer height. More work is needed to understand the bias in the intercept and the slope relative to columns derived from the in situ aircraft and surface measurements.

11.
J Geophys Res Atmos ; 123(6): 3304-3320, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35958736

RESUMO

Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NO y relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNO y ratios that have previously been interpreted to represent CO:NO y ratios in emissions from local sources. Modeled and measured ΔCO:ΔNO y are similar; however, measured ΔCO:ΔNO y has much more daily variability than modeled values. Sector-based tagging shows that regional transport, on-road gasoline vehicles, and nonroad equipment are the major contributors to modeled CO mixing ratios in the Baltimore area. In addition to those sources, on-road diesel vehicles, soil emissions, and power plants also contribute substantially to modeled NO y in the area. The sector mix is important because emitted CO:NO x ratios vary by several orders of magnitude among the emission sources. The model-predicted gasoline/diesel split remains constant across all measurement locations in this study. Comparison of ΔCO:ΔNO y to emitted CO:NO y is challenged by ambient and modeled evidence that free tropospheric entrainment, and atmospheric processing elevates ambient ΔCO:ΔNO y above emitted ratios. Specifically, modeled ΔCO:ΔNO y from tagged mobile source emissions is enhanced 5-50% above the emitted ratios at times and locations of aircraft measurements. We also find a correlation between ambient formaldehyde concentrations and measured ΔCO:ΔNO y suggesting that secondary CO formation plays a role in these elevated ratios. This analysis suggests that ambient urban daytime ΔCO:ΔNO y values are not reflective of emitted ratios from individual sources.

12.
Atmos Chem Phys ; 16(21): 13477-13490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29619044

RESUMO

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

13.
J Geophys Res Atmos ; 121(21): 13088-13112, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812915

RESUMO

In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r 2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for ~28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (±20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

15.
J Geophys Res ; 116(D5)2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33716354

RESUMO

[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (∼20-200 km) near many urban areas.

16.
Opt Express ; 18(26): 27670-81, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21197041

RESUMO

A difference-frequency generation based spectrometer system for simultaneous ultra-sensitive measurements of formaldehyde (CH2O) and Methane (CH4) is presented. A new multiplexing approach using collinear quasi-phase-matching in a single grating period of periodically poled lithium niobate (PPLN) is discussed and demonstrated for two pairs of pump and signal lasers to generate mid-infrared frequencies at 2831.64 cm(-1) and 2916.32 cm(-1), respectively. The corresponding absorption signals are discriminated by modulating the DFB diode lasers at modulation frequencies of 40 kHz and 50 kHz, respectively, and using a computer based modulation and de-modulation scheme. In addition, simultaneous measurements of CH2O, CH4 and H2O are demonstrated utilizing both collinear and non-collinear quasi-phase-matching.


Assuntos
Misturas Complexas/análise , Formaldeído/análise , Lasers , Metano/análise , Análise Espectral/instrumentação , Análise Espectral/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Opt Lett ; 34(2): 172-4, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19148245

RESUMO

A precision laser spectrometer for the detection of CO(2) isotopes is reported. The spectrometer measures the fundamental absorption signatures of (13)C and (12)C isotopes in CO(2) at 4.32 microm using a tunable mid-IR laser source based on difference-frequency generation. The spectrometer attains a precision of up to 0.02 per thousand for 150 s of averaging. An overall accuracy of 0.05 per thousand was obtained when sampling various calibrated reference gases.

19.
Science ; 315(5813): 816-20, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17204609

RESUMO

We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the upper troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the eastern United States and Canada during summer. These measurements provide unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

20.
Opt Express ; 15(2): 564-71, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19532275

RESUMO

A novel waveguide for difference frequency generation in the mid-IR spectral region at 3.52 mum is characterized. High mid-IR power of 15 mW and an external conversion efficiency of up to 19 %W( -1) have been obtained. An optical beam propagation factor M(2) =1.18 was determined using the second moment method. A simple 2-f absorption spectra demonstrates the potential of this mid-IR source for high precision trace gas sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...