Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 304: 107112, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952496

RESUMO

We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Rodopsina/química , Pressão Osmótica , Receptores Acoplados a Proteínas G/química , Conformação Molecular , Água
2.
J Phys Chem B ; 126(31): 5876-5886, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901512

RESUMO

The ability to exploit carbonyl groups to measure electric fields in enzymes and other complex reactive environments by using the vibrational Stark effect has inspired growing interest in how these fields can be measured, tuned, and ultimately designed. Previous studies have concentrated on the role of the solvent in tuning the fields exerted on the solute. Here, we explore instead the role of the solute electronic structure in modifying the local solvent organization and electric field exerted on the solute. By measuring the infrared absorption spectra of amide-containing molecules, as prototypical peptides, and contrasting them with non-amide carbonyls in a wide range of solvents, we show that these solutes experience notable differences in their frequency shifts in polar solvents. Using vibrational Stark spectroscopy and molecular dynamics simulations, we demonstrate that while some of these differences can be rationalized by using the distinct intrinsic Stark tuning rates of the solutes, the larger frequency shifts for amides and dimethylurea primarily result from the larger solvent electric fields experienced by their carbonyl groups. These larger fields arise due to their stronger p-π conjugation, which results in larger C═O bond dipole moments that further induce substantial solvent organization. Using electronic structure calculations, we decompose the electric fields into contributions from solvent molecules that are in the first solvation shell and those from the bulk and show that both of these contributions are significant and become larger with enhanced conjugation in solutes. These results show that structural modifications of a solute can be used to tune both the solvent organization and electrostatic environment, indicating the importance of a solute-centric paradigm in modulating and designing the electrostatic environment in condensed-phase chemical processes.


Assuntos
Amidas , Eletrônica , Amidas/química , Soluções , Solventes/química , Eletricidade Estática
3.
Proc Natl Acad Sci U S A ; 119(21): e2117349119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35584119

RESUMO

The Rhodopsin family of G-protein­coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80­100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Solventes/química , Água/química
4.
Angew Chem Int Ed Engl ; 60(5): 2288-2295, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32596956

RESUMO

Visual rhodopsin is an important archetype for G-protein-coupled receptors, which are membrane proteins implicated in cellular signal transduction. Herein, we show experimentally that approximately 80 water molecules flood rhodopsin upon light absorption to form a solvent-swollen active state. An influx of mobile water is necessary for activating the photoreceptor, and this finding is supported by molecular dynamics (MD) simulations. Combined force-based measurements involving osmotic and hydrostatic pressure indicate the expansion occurs by changes in cavity volumes, together with greater hydration in the active metarhodopsin-II state. Moreover, we discovered that binding and release of the C-terminal helix of transducin is coupled to hydration changes as may occur in visual signal amplification. Hydration-dehydration explains signaling by a dynamic allosteric mechanism, in which the soft membrane matter (lipids and water) has a pivotal role in the catalytic G-protein cycle.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Água/química , Humanos
5.
Biophys J ; 120(3): 440-452, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217383

RESUMO

G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically targeted membrane protein family. Here, we used the visual receptor rhodopsin as an archetype for understanding membrane lipid influences on conformational changes involved in GPCR activation. Visual rhodopsin was recombined with lipids varying in their degree of acyl chain unsaturation and polar headgroup size using 1-palmitoyl-2-oleoyl-sn-glycero- and 1,2-dioleoyl-sn-glycerophospholipids with phosphocholine (PC) or phosphoethanolamine (PE) substituents. The receptor activation profile after light excitation was measured using time-resolved ultraviolet-visible spectroscopy. We discovered that more saturated POPC lipids back shifted the equilibrium to the inactive state, whereas the small-headgroup, highly unsaturated DOPE lipids favored the active state. Increasing unsaturation and decreasing headgroup size have similar effects that combine to yield control of rhodopsin activation, and necessitate factors beyond proteolipid solvation energy and bilayer surface electrostatics. Hence, we consider a balance of curvature free energy with hydrophobic matching and demonstrate how our data support a flexible surface model (FSM) for the coupling between proteins and lipids. The FSM is based on the Helfrich formulation of membrane bending energy as we previously first applied to lipid-protein interactions. Membrane elasticity and curvature strain are induced by lateral pressure imbalances between the constituent lipids and drive key physiological processes at the membrane level. Spontaneous negative monolayer curvature toward water is mediated by unsaturated, small-headgroup lipids and couples directly to GPCR activation upon light absorption by rhodopsin. For the first time to our knowledge, we demonstrate this modulation in both the equilibrium and pre-equilibrium evolving states using a time-resolved approach.


Assuntos
Bicamadas Lipídicas , Rodopsina , Eletrônica , Lipídeos de Membrana , Fosfatidilcolinas , Análise Espectral
6.
Int J Mass Spectrom ; 4602021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33281496

RESUMO

Rhodopsin, a prototypical G-protein-coupled receptor, is responsible for scoptic vision at low-light levels. Although rhodopsin's photoactivation cascade is well understood, it remains unclear how lipid and zinc binding to the receptor are coupled. Using native mass spectrometry, we developed a novel data analysis strategy to deconvolve zinc and lipid bound to the proteoforms of rhodopsin and investigated the allosteric interaction between lipids and zinc binding. We discovered that phosphatidylcholine bound to rhodopsin with a greater affinity than phosphatidylserine or phosphatidylethanolamine, and that binding of all lipids was influenced by zinc but with different effects. In contrast, zinc binding was relatively unperturbed by lipids. Overall, these data reveal that lipid binding can be strongly and differentially influenced by metal ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...