Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Nitrogênio , Oxigênio , Plâncton
2.
Sci Rep ; 13(1): 22148, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092878

RESUMO

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment. In cases where nitrogen mass loading is not altered or altered minimally, this practice has the potential to influence spatial patterns in coastal eutrophication. We apply a physical-biogeochemical numerical ocean model to understand the influence of nitrogen management and potable wastewater recycling on net primary productivity (NPP), pH, and oxygen. We model several theoretical management scenarios by combining dissolved inorganic nitrogen (DIN) reductions from 50 to 85% and recycling from 0 to 90%, applied to 19 generalized wastewater outfalls in the Southern California Bight. Under no recycling, NPP, acidification, and oxygen loss decline with DIN reductions, which simulated habitat volume expansion for pelagic calcifiers and aerobic taxa. Recycling scenarios under intermediate DIN reduction show patchier areas of pH and oxygen loss with steeper vertical declines relative to a "no recycling" scenario. These patches are diminished under 85% DIN reduction across all recycling levels, suggesting nitrogen management lowers eutrophication risk even with concentrated discharges. These findings represent a novel application of ocean numerical models to investigate the regional effects of idealized outfall management on eutrophication. Additional work is needed to investigate more realistic outfall-specific water recycling and nutrient management scenarios and to contextualize the benefit of these management actions, given accelerating acidification and hypoxia from climate change.

4.
Nat Plants ; 9(1): 45-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564631

RESUMO

Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on average, while using farmed seaweed for products that avoid a gigaton of CO2-equivalent GHG emissions annually could return a profit of $50 per tCO2-eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas (>90,000 km2)-a >30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.


Assuntos
Mudança Climática , Alga Marinha , Dióxido de Carbono , Agricultura/métodos , Carbono
5.
J Therm Biol ; 93: 102732, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33077143

RESUMO

The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.


Assuntos
Ecossistema , Euphausiacea/fisiologia , Oxigênio/metabolismo , Termotolerância , Animais , Coração/fisiologia , Movimento , Consumo de Oxigênio , Respiração
6.
Biol Bull ; 234(1): 45-57, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29694804

RESUMO

Exogenous environmental factors alter growth rates, yet information remains scant on the biochemical mechanisms and energy trade-offs that underlie variability in the growth of marine invertebrates. Here we study the biochemical bases for differential growth and energy utilization (as adenosine triphosphate [ATP] equivalents) during larval growth of the bivalve Crassostrea gigas exposed to increasing levels of experimental ocean acidification (control, middle, and high pCO2, corresponding to ∼400, ∼800, and ∼1100 µatm, respectively). Elevated pCO2 hindered larval ability to accrete both shell and whole-body protein content. This negative impact was not due to an inability to synthesize protein per se, because size-specific rates of protein synthesis were upregulated at both middle and high pCO2 treatments by as much as 45% relative to control pCO2. Rather, protein degradation rates increased with increasing pCO2. At control pCO2, 89% of cellular energy (ATP equivalents) utilization was accounted for by just 2 processes in larvae, with protein synthesis accounting for 66% and sodium-potassium transport accounting for 23%. The energetic demand necessitated by elevated protein synthesis rates could be accommodated either by reallocating available energy from within the existing ATP pool or by increasing the production of total ATP. The former strategy was observed at middle pCO2, while the latter strategy was observed at high pCO2. Increased pCO2 also altered sodium-potassium transport, but with minimal impact on rates of ATP utilization relative to the impact observed for protein synthesis. Quantifying the actual energy costs and trade-offs for maintaining physiological homeostasis in response to stress will help to reveal the mechanisms of resilience thresholds to environmental change.


Assuntos
Dióxido de Carbono/farmacologia , Crassostrea/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Animais , Crassostrea/crescimento & desenvolvimento , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Água do Mar/química
7.
J Exp Biol ; 221(Pt 10)2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29615524

RESUMO

Animal size is a highly variable trait regulated by complex interactions between biological and environmental processes. Despite the importance of understanding the mechanistic bases of growth, predicting size variation in early stages of development remains challenging. Pedigreed lines of the Pacific oyster (Crassostrea gigas) were crossed to produce contrasting growth phenotypes to analyze the metabolic bases of growth variation in larval stages. Under controlled environmental conditions, substantial growth variation of up to 430% in shell length occurred among 12 larval families. Protein was the major biochemical constituent in larvae, with an average protein-to-lipid content ratio of 2.8. On average, 86% of protein synthesized was turned over (i.e. only 14% retained as protein accreted), with a regulatory shift in depositional efficiency resulting in increased protein accretion during later larval growth. Variation in protein depositional efficiency among families did not explain the range in larval growth rates. Instead, changes in protein synthesis rates predicted 72% of growth variation. High rates of protein synthesis to support faster growth, in turn, necessitated greater allocation of the total ATP pool to protein synthesis. An ATP allocation model is presented for larvae of C. gigas that includes the major components (82%) of energy demand: protein synthesis (45%), ion pump activity (20%), shell formation (14%) and protein degradation (3%). The metabolic trade-offs between faster growth and the need for higher ATP allocation to protein synthesis could be a major determinant of fitness for larvae of different genotypes responding to the stress of environmental change.


Assuntos
Crassostrea/crescimento & desenvolvimento , Crassostrea/metabolismo , Biossíntese de Proteínas , Trifosfato de Adenosina/metabolismo , Exoesqueleto/crescimento & desenvolvimento , Animais , Crassostrea/química , Crassostrea/genética , Genótipo , Larva/química , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fenótipo
8.
Proc Biol Sci ; 283(1829)2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122565

RESUMO

Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5-0.15 ml l(-1) (approx. 22-6 µM; approx. 21-5 matm) range, and as temperature increases through the 7-10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.


Assuntos
Biodiversidade , Ecossistema , Aquecimento Global , Adaptação Fisiológica , Animais , Organismos Aquáticos , Dióxido de Carbono/análise , Peixes , Concentração de Íons de Hidrogênio , Oceanos e Mares , Oxigênio/análise , Oceano Pacífico , Água do Mar
9.
Environ Sci Technol ; 48(17): 9982-94, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25084232

RESUMO

The threat that ocean acidification (OA) poses to marine ecosystems is now recognized and U.S. funding agencies have designated specific funding for the study of OA. We present a research framework for studying OA that describes it as a biogeochemical event that impacts individual species and ecosystems in potentially unexpected ways. We draw upon specific lessons learned about ecosystem responses from research on acid rain, carbon dioxide enrichment in terrestrial plant communities, and nitrogen deposition. We further characterize the links between carbon chemistry changes and effects on individuals and ecosystems, and enumerate key hypotheses for testing. Finally, we quantify how U.S. research funding has been distributed among these linkages, concluding that there is an urgent need for research programs designed to anticipate how the effects of OA will reverberate throughout assemblages of species.


Assuntos
Ácidos/química , Oceanos e Mares , Pesquisa , Ciclo do Carbono , Ecossistema , Estados Unidos
10.
Environ Sci Technol ; 48(11): 6401-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24798367

RESUMO

As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiurnal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown pH conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.


Assuntos
Exoesqueleto/química , Monitoramento Ambiental/métodos , Larva/química , Urânio/análise , Animais , California , Concentração de Íons de Hidrogênio , Mytilus/química , Oceanos e Mares , Oceano Pacífico
11.
Biol Bull ; 226(1): 1-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24648202

RESUMO

Ocean acidification impacts fertilization in some species of sea urchin, but whether sensitivity is great enough to be influenced by present-day pH variability has not been documented. In this study, fertilization in two congeneric sea urchins, Strongylocentrotus purpuratus and S. franciscanus, was found to be sensitive to reduced pH, <7.50, but only within a range of sperm-egg ratios that was species-specific. By further testing fertilization across a broad range of pH, pH-fertilization curves were generated and revealed that S. purpuratus was largely robust to pH, while fertilization in S. franciscanus was sensitive to even modest reductions in pH. Combining the pH-fertilization response curves with pH data collected from these species' habitat demonstrated that relative fertilization success remained high for S. purpuratus but could be as low as 79% for S. franciscanus during periods of naturally low pH. In order for S. franciscanus to maintain high fertilization success in the present and future, adequate adult densities, and thus sufficient sperm-egg ratios, will be required to negate the effects of low pH. In contrast, fertilization of S. purpuratus was robust to a broad range of pH, encompassing both present-day and future ocean acidification scenarios, even though the two congeners have similar habitats.


Assuntos
Ecossistema , Fertilização/fisiologia , Ouriços-do-Mar/fisiologia , Análise de Variância , Animais , Feminino , Concentração de Íons de Hidrogênio , Masculino
12.
Glob Chang Biol ; 20(3): 754-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343909

RESUMO

Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 µmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses.


Assuntos
Mytilus/crescimento & desenvolvimento , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mytilus/metabolismo , Oceanos e Mares , Oxigênio/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(33): 13446-51, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898193

RESUMO

The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.


Assuntos
Biodiversidade , Evolução Biológica , Cadeia Alimentar , Fósseis , Oxigênio/análise , Análise de Variância , Animais , Comportamento Alimentar/fisiologia , Oceanos e Mares , Paleontologia
14.
PLoS One ; 6(12): e28983, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205986

RESUMO

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2), often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2). Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.


Assuntos
Ecossistema , Água do Mar/química , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...