Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Res ; 248: 118168, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220073

RESUMO

This study investigated degradation kinetics of five selected organic micropollutants (OMPs) present in poultry litter (namely: sulfadiazine, tetracycline, and doxycycline hyclate (antibiotics); estrone and 17-ß-estradiol (hormones)) during hydrothermal carbonization (HTC) treatment as the temperature stepwise increased to 250 °C. All five pure OMPs were completely degraded before 250 °C was reached during the HTC process. Nevertheless, presence of poultry litter slowed down the degradation of OMPs. Through elemental mass balance calculation, it is noted that after 15 min (temperature less than 137 °C), 69-82% of organic carbon and 50-66% of organic nitrogen initially consisting part of the target antibiotics were fully mineralized. Both HTC filtrates and hydrochars obtained from poultry litter inhibited Escherichia coli and Bacillus subtilis growth. A combination of high salinity, high nutrients, dissolved organic carbon, and other ions in the filtrate as well as the adsorption of OMPs on hydrochars were probably the reason for the high toxicity.


Assuntos
Antibacterianos , Aves Domésticas , Animais , Carbono , Temperatura , Estradiol
2.
Water Res ; 251: 121152, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277830

RESUMO

Advanced oxidation processes (AOPs) augment traditional water treatment methods, enhancing the removal of persistent contaminants. Efficiency of AOPs that utilize UV radiation for oxidants generation (e.g., ·OH) is reduced in water matrices that contain substants that may act as inner UV filters and/or scavengers for the generated radicals. Among such interfering compounds are major inorganic ions and dissolved organic matter that are naturally present in realistic waters. Thus, to improve AOPs efficiency it is desirable to separate the target pollutants from these natural species before treatment. Here the potential of electrodialysis as such pretreatment was investigated. The impact of this pretreatment on photo-oxidation of the pharmaceutical carbamazepine (CBZ) under VUV (λ<200 nm) irradiation, which yields ·OH generation via water homolysis, was tested in different water matrices. The obtained results indicate that in all tested solutions: Deionized water, groundwater, surface water, and treated wastewater, the addition of electrodialysis pretreatment successfully separated the target micropollutant CBZ from the major natural ions and to some extend the NOM, resulting faster degradation rates of CBZ and its transformation products in the following VUV-based AOP. Energy cost calculations indicated that addition of this pretreatment step reduces the overall energy demand of the system (i.e., energy consumption for the electrodialysis step was smaller than the energy gained by reducing the required VUV irradiation dose).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Raios Ultravioleta , Vácuo , Oxidantes , Oxirredução , Purificação da Água/métodos , Carbamazepina , Íons , Peróxido de Hidrogênio
3.
Water Sci Technol ; 87(4): 910-923, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36853770

RESUMO

In this long-term study (eight months), a wastewater-based epidemiology program was initiated as a decision support tool for the detection and containment of COVID-19 spread in the Technion campus. The on-campus students' accommodations (∼3,300 residents) were divided into housing clusters and monitored through wastewater SARS-CoV-2 surveillance in 10 manholes. Results were used to create a 'traffic-light' scheme allowing the Technion's COVID-19 task force to track COVID-19 spatiotemporal spread on the campus, and consequently, contain it before high morbidity levels develop. Of the 523 sewage samples analysed, 87.4% were negative for SARS-CoV-2 while 11.5% were positive, corroborating morbidity information the COVID-19 task force had. For 7.6% of the SARS-CoV-2 positive samples, the task force had no information about positive resident/s. In these events, new cases were identified after the relevant residents were clinically surge tested for COVID-19. Hence, in these instances, wastewater surveillance provided early warning helping to secure the health of the campus residents by minimising COVID-19 spread. The inflammation biomarker ferritin levels in SARS-CoV-2 positive sewage samples were significantly higher than in negative ones. This may indicate that in the future, ferritin (and other biomarkers) concentrations in wastewater could serve as indicators of infectious and inflammatory disease outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Esgotos , Surtos de Doenças , Ferritinas
4.
Water Res X ; 16: 100149, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35873367

RESUMO

Water residence time, which is affected by increasing water demands and climate change, plays a crucial role in lakes and reservoirs since it influences many natural physical and ecological processes that eventually impact the water quality of the waterbody. Thus, accurate quantification of the water residence time and its distribution is an important tool in lake management. In this study we present a novel approach for assessing the residence time in lakes and reservoirs. The approach is based on the Leslie matrix model that was originally developed for the analysis of age-structured biological population dynamics. In this approach the water in the lake is divided into different age classes each representing the time since the "parcel" of water entered the lake and provides an overall picture of the water age structure. The traditional approach for calculating residence times, which relies only on the lake volume and annual inflow or outflow volumes thereby disregarding any previous information, is very sensitive to large interannual variation. While the proposed approach produces the fraction and volume distribution curves of all age classes within the lake for each simulated timestep. Thus, in addition to mean residence time, the fraction of young water (FYW), quantifying the "young" fraction of water in the lake can be analyzed. The same is true for any other age class of water. The approach was applied to Lake Kinneret (Sea of Galilee) historical data collected over 32 years (1987-2018) and for prediction of long-term time series based on several future scenarios (inflows and outflows). It offers a more accurate quantification of the mean residence time of water in a lake and can easily be adapted to other waterbodies. Comparison of simulation results may serve as basis for determining the lake's management policy, by controlling the inflows and outflows, that will affect both the mean residence time and the fraction of "young/old" age classes of water.

5.
Chemosphere ; 283: 131194, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467943

RESUMO

The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (Ì´ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.


Assuntos
COVID-19 , Esgotos , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias
6.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209266

RESUMO

Sulfide species may be present in groundwater due to natural processes or due to anthropogenic activity. H2S contamination poses odor nuisance and may also lead to adverse health effects. Advanced oxidation processes (AOPs) are considered promising treatments for hydrogen-sulfide removal from water, but conventional AOPs usually require continuous chemical dosing, as well as post-treatment, when solid catalysts are applied. Vacuum-UV (VUV) radiation can generate ·OH in situ via water photolysis, initiating chemical-free AOP. The present study investigated the applicability of VUV-based AOP for removal of H2S both in synthetic solutions and in real groundwater, comparing combined UV-C/VUV and UV-C only radiation in a continuous-flow reactor. In deionized water, H2S degradation was much faster under the combined radiation, dominated by indirect photolysis, and indicated the formation of sulfite intermediates that convert to sulfate at high radiation doses. Sulfide was efficiently removed from natural groundwater by the two examined lamps, with no clear preference between them. However, in anoxic conditions, common in sulfide-containing groundwater, a small advantage for the combined lamp was observed. These results demonstrate the potential of utilizing VUV-based AOP for treating H2S contamination in groundwater as a chemical-free treatment, which can be especially attractive to remote small treatment facilities.

7.
Front Public Health ; 9: 561710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047467

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.


Assuntos
COVID-19 , Esgotos , Monitoramento Ambiental , Humanos , RNA Viral/genética , SARS-CoV-2
8.
Environ Sci Pollut Res Int ; 27(7): 7578-7587, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31885065

RESUMO

Despite growing apprehension regarding the fate of organic micropollutants (MPs) of emerging concern, little attention has been paid to their presence in domestic greywater, where they mainly originate from personal care products. Many MPs are not fully removed in conventional greywater treatments and require additional treatment. Vacuum-UV radiation (VUV) can generate ·OH in situ, via water photolysis, initiating advanced oxidation process (AOP) without any chemical addition. Despite growing interest in VUV-based AOP, its performance in real-life grey- or wastewater matrices has hardly been investigated. The present study investigates the removal of triclosan (TCS) and oxybenzone (BP3), common antibacterial and UV-filter MPs, in deionized water (DIW) and in treated greywater (TGW) using combined UVC/VUV or UVC only radiation in a continuous-flow reactor. Degradation kinetics of these MPs and their transformation products (TPs) were addressed, as well as bacterial growth inhibition of the resulting reactor's effluent. In DIW, MP degradation was much faster under the combined UVC/VUV irradiation. In TGW, the combined radiation successfully removed both MPs but at lower efficiency than in DIW, as particles and dissolved organic matter (DOM) acted as radical scavengers. Filtration and partial DOM removal prior to irradiation improved the process efficiency and reduced energy requirements under the combined radiation (from 1.6 and 167 to 1.1 and 6.0 kWh m-3·Ö¼order-1 for TCS and BP3, respectively). VUV radiation also reduced TP concentrations in the effluent. As a result, bacterial growth inhibition of triclosan solution irradiated by VUC/VUV was lower than that irradiated by UVC light alone, for UV dose > 120 mJ cm-2.


Assuntos
Raios Ultravioleta , Vácuo , Águas Residuárias , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Benzofenonas/isolamento & purificação , Oxirredução , Fotólise , Triclosan/isolamento & purificação
9.
Water Res ; 125: 410-417, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28889040

RESUMO

Greywater (GW), domestic wastewater excluding the streams generated by toilets and kitchens, can serve as an alternative water source. The main options for GW reuse are toilet flushing and garden irrigation, both generating aerosols. These may transmit inhalable pathogens like Legionella and present a potential health risk. This study quantified the health risk that may arise from inhalation of Legionella-contaminated aerosols due to non-potable GW reuse. Data on Legionella concentrations in potable water and GW was collected. Then, Quantitative Microbial Risk Assessment (QMRA) was performed for two possible exposure scenarios: garden irrigation and toilet flushing. This was performed while considering Legionella seasonality. In order to determine the safety of GW reuse regarding Legionella transmission, the obtained results were compared with estimated tolerable risk levels of infection and of disease. Both limits were expressed as Disability-Adjusted Life Years index (DALY) being 10-4 and 10-5, respectively. The QMRA revealed that the annual risk associated with reuse of treated and chlorinated GW for garden irrigation and toilet flushing was not significantly higher than the risk associated with using potable water for the same two purposes. In all studied scenarios, the health risk stemming from reusing treated and chlorinated GW was acceptable regarding Legionella infection. In contrast, reuse of untreated or treated but unchlorinated GW should not be practiced, as these are associated with significantly higher health risks.


Assuntos
Legionella pneumophila , Reciclagem , Águas Residuárias/microbiologia , Microbiologia da Água , Aerossóis , Água Potável/microbiologia , Medição de Risco
11.
Sci Total Environ ; 598: 925-930, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28458210

RESUMO

Greywater (GW) is becoming an important alternative water source for non-potable purposes, but requires treatment to remove contaminants, including micropollutants that in GW mainly originate from personal care products. Biofilters are commonly used for onsite GW treatment, but there are still significant knowledge gaps regarding their ability and mechanism of micropollutants removal. This study investigates the removal of propylparaben (PPB) by aerobic attached-growth biomass, quantifying the kinetics and the interplay between sorption and biodegradation. The ability of biomass, collected from a pilot scale biofilter treating real GW, to eliminate PPB from both synthetic greywater (SGW) and deionized (DI) water was studied in laboratory batch experiments. Elimination of PPB was found to proceed via sorption to biomass followed by biodegradation. Sorption of PPB by biomass in SGW and in DI water exhibited similar kinetics, fitting Langmuir isotherm with the maximum adsorbed amount of 9.8mgPPB gbiomass-1. PPB biodegradation exhibited first-order kinetics in both SGW and DI water, with a 30h lag-phase in SGW and no lag-phase in DI water. This difference is attributed to presence of readily-biodegradable organic matter in the SGW. Actual PPB degradation rate in both cases (excluding the lag phase in SGW) was very similar, 62mgPPB gbiomass-1d-1, yielding almost full mineralization. These findings show the relative contribution of the major processes involved in PPB elimination by biofilters and can be applied for designing GW treatment units.

12.
Water Sci Technol ; 75(7-8): 1862-1872, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28452778

RESUMO

Together with significant water savings that onsite greywater reuse (GWR) may provide, it may also affect the performance of urban sewer systems and wastewater treatment plants (WWTPs). In order to examine these effects, an integrated stochastic simulation system for GWR in urban areas was developed. The model includes stochastic generators of domestic wastewater streams and gross solids (GSs), a sewer network model which includes hydrodynamic simulation and a GS transport module, and a dynamic process model of the WWTP. The developed model was applied to a case study site in Israel. For the validation of the sewer simulator, field experiments in a real sewer segment were conducted. The paper presents the integration and implementation of these modules and depicts the results of the effects of various GWR scenarios on GS movement in sewers and on the performance of the WWTP.


Assuntos
Águas Residuárias/química , Israel , Modelos Teóricos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água
13.
Water Res ; 115: 195-209, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279940

RESUMO

While the practice of rainwater harvesting (RWH) can be traced back millennia, the degree of its modern implementation varies greatly across the world, often with systems that do not maximize potential benefits. With a global focus, the pertinent practical, theoretical and social aspects of RWH are reviewed in order to ascertain the state of the art. Avenues for future research are also identified. A major finding is that the degree of RWH systems implementation and the technology selection are strongly influenced by economic constraints and local regulations. Moreover, despite design protocols having been set up in many countries, recommendations are still often organized only with the objective of conserving water without considering other potential benefits associated with the multiple-purpose nature of RWH. It is suggested that future work on RWH addresses three priority challenges. Firstly, more empirical data on system operation is needed to allow improved modelling by taking into account multiple objectives of RWH systems. Secondly, maintenance aspects and how they may impact the quality of collected rainwater should be explored in the future as a way to increase confidence on rainwater use. Finally, research should be devoted to the understanding of how institutional and socio-political support can be best targeted to improve system efficacy and community acceptance.


Assuntos
Chuva , Abastecimento de Água/economia , Cidades , Conservação dos Recursos Naturais
14.
J Environ Manage ; 182: 464-476, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27526084

RESUMO

Municipal wastewater (WW) effluent represents a reliable and significant source for reclaimed water, very much needed nowadays. Water reclamation and reuse has become an attractive option for conserving and extending available water sources. The decentralized approach to domestic WW treatment benefits from the advantages of source separation, which makes available simple small-scale systems and on-site reuse, which can be constructed on a short time schedule and occasionally upgraded with new technological developments. In this study we perform a Life Cycle Assessment to compare between the environmental impacts of four alternatives for a hypothetical city's water-wastewater service system. The baseline alternative is the most common, centralized approach for WW treatment, in which WW is conveyed to and treated in a large wastewater treatment plant (WWTP) and is then discharged to a stream. The three alternatives represent different scales of distribution of the WW treatment phase, along with urban irrigation and domestic non-potable water reuse (toilet flushing). The first alternative includes centralized treatment at a WWTP, with part of the reclaimed WW (RWW) supplied back to the urban consumers. The second and third alternatives implement de-centralized greywater (GW) treatment with local reuse, one at cluster level (320 households) and one at building level (40 households). Life cycle impact assessment results show a consistent disadvantage of the prevailing centralized approach under local conditions in Israel, where seawater desalination is the marginal source of water supply. The alternative of source separation and GW reuse at cluster level seems to be the most preferable one, though its environmental performance is only slightly better than GW reuse at building level. Centralized WW treatment with urban reuse of WWTP effluents is not advantageous over decentralized treatment of GW because the supply of RWW back to consumers is very costly in materials and energy. Electricity is a major driver of the impacts in most categories, pertaining mostly to potable water production and supply. Infrastructure was found to have a notable effect on metal depletion, human toxicity and freshwater and marine ecotoxicity. Sensitivity to major model parameters was analyzed. A shift to a larger share of renewable energy sources in the electricity mix results in a dramatic improvement in most impact categories. Switching to a mix of water sources, rather than the marginal source, leads to a significant reduction in most impacts. It is concluded that under the conditions tested, a decentralized approach to urban wastewater management is environmentally preferable to the common centralized system. It is worth exploring such options under different conditions as well, in cases which new urban infrastructure is planned or replacement of old infrastructure is required.


Assuntos
Reciclagem/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Cidades , Meio Ambiente , Humanos , Israel , Modelos Teóricos
15.
Environ Sci Technol ; 50(15): 8362-7, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27435379

RESUMO

An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.


Assuntos
Higroscópicos , Água , Gases , Modelos Teóricos , Vapor
16.
Sci Total Environ ; 538: 230-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26311579

RESUMO

Graywater reuse is rapidly gaining popularity as a viable source of reclaimed water, mainly for garden irrigation and toilet flushing. The purpose of this study was to determine, by epidemiological survey, the risk for gastroenteritis symptoms associated with graywater reuse. The study comprised a weekly health questionnaire answered by both graywater users and non-graywater users (control group) regarding their health status over a period of 1year, and periodic sampling for graywater quality. Participants were also asked to respond to a one-time lifestyle questionnaire to assess their level of exposure to graywater or potable water used in garden irrigation. Graywater quality was typical and comparable to previous studies, with average fecal coliform concentration of 10(3)CFU 100ml(-1). A Cox Proportional Hazards model indicated a somewhat higher health risk for the control group (P<0.05), suggesting that there was practically no difference in the prevalence of water-related diseases between users of graywater and potable water. Since the concentration of pathogens in the current study was higher than that suggested by quantitative microbial risk assessment (QMRA), yet there was no difference in the prevalence of water-related diseases between control and graywater users, it was postulated that QMRA is conservative and can safely be used toward the establishment of regulations governing graywater reuse.


Assuntos
Irrigação Agrícola/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Microbiologia da Água , Clima Desértico , Humanos , Medição de Risco , Abastecimento de Água
17.
Sci Total Environ ; 533: 557-65, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188406

RESUMO

Greywater is an alternative water source that can help alleviate stress on depleted water resources. The main options for greywater reuse are toilet flushing and garden irrigation, both producing aerosols. For that reason transmission of inhalable pathogens like Legionella present a potential risk. To improve the understanding about Legionella in greywater, we traced the pathogen seasonally from the potable water system to the final steps of the greywater treatment in four houses in northern Israel. Physicochemical and microbiological parameters were analyzed in order to assess background greywater quality and to establish possible associations with Legionella. The mean concentrations of Legionella pneumophila isolated from the potable water system were 6.4×10(2) and 5.9×10(3) cfu/l in cold and hot water respectively. By amending the ISO protocol for Legionella isolation from drinking water, we succeeded in quantifying Legionella in greywater. The mean Legionella concentrations that were found in raw, treated and treated chlorinated greywater were 1.2×10(5), 2.4×10(4) and 5.7×10(3) cfu/l respectively. While Legionella counts in potable water presented a seasonal pattern with high concentrations in summer, its counts in greywater presented an almost inversed pattern. Greywater treatment resulted in 95% decrease in Legionella counts. No significant difference was found between Legionella concentrations in potable water and the treated chlorinated greywater. These findings indicate that regarding Legionella, reusing treated chlorinated greywater would exhibit a risk that is very similar to the risk associated with using potable water for the same non-potable uses.


Assuntos
Água Potável/microbiologia , Legionella pneumophila , Microbiologia da Água , Purificação da Água/métodos , Israel
18.
MethodsX ; 2: 458-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26740925

RESUMO

Legionella, an opportunistic human pathogen whose natural environment is water, is transmitted to humans through inhalation of contaminated aerosols. Legionella has been isolated from a high diversity of water types. Due its importance as a pathogen, two ISO protocols have been developed for its monitoring. However, these two protocols are not suitable for analyzing Legionella in greywater (GW). GW is domestic wastewater excluding the inputs from toilets and kitchen. It can serve as an alternative water source, mainly for toilet flushing and garden irrigation; both producing aerosols that can cause a risk for Legionella infection. Hence, before reuse, GW has to be treated and its quality needs to be monitored. The difficulty of Legionella isolation from GW strives in the very high load of contaminant bacteria. Here we describe a modification of the ISO protocol 11731:1998 that enables the isolation and quantification of Legionella from GW samples. The following modifications were made:•To enable isolation of Legionella from greywater, a pre-filtration step that removes coarse matter is recommended.•Legionella can be isolated after a combined acid-thermic treatment that eliminates the high load of contaminant bacteria in the sample.

19.
Water Sci Technol ; 69(12): 2452-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960007

RESUMO

Reuse of greywater (GW) has raised environmental and public health concerns. Specifically, these concerns relate to onsite treatment operated by non-professionals; systems must therefore be reliable, simple to use and also economically feasible if they are to be widely used. The aims of this study were to: (a) investigate GW treatment efficiency using 20 full-scale recirculating vertical flow constructed wetlands (RVFCWs) operated in households in arid and Mediterranean regions; and (b) study the long-term effects of irrigation with treated GW on soil properties. RVFCW systems were installed and monitored routinely over 3 years. Raw, treated and disinfected treated GW samples were analyzed for various physicochemical and microbial parameters. Native soil plots and nearby freshwater (FW) and treated GW irrigated soil plots were sampled twice a year - at the end of the winter and at the end of the summer. Soil samples were analyzed for various physicochemical and microbial parameters. Overall, the RVFCW proved to be a robust and reliable GW treatment system. The treated GW quality met strict Israeli regulations for urban irrigation. Results also suggest that irrigation with sufficiently treated GW has no adverse effects on soil properties. Yet, continued monitoring to follow longer term trends is recommended.


Assuntos
Irrigação Agrícola , Meio Ambiente , Reciclagem/métodos , Água/química , Áreas Alagadas , Conservação dos Recursos Naturais , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
20.
Sci Total Environ ; 487: 20-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24751591

RESUMO

Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems.


Assuntos
Reciclagem/métodos , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Israel , Medição de Risco , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Abastecimento de Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...