Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 13(10): 1393-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25179668

RESUMO

We report the dynamics of electrons injected into TiO2 due to the excitation of Ru-N719 dye at 532 nm. The synchrotron based broadband transient mid-IR spectroscopy revealed that the injected electrons are quickly confined to a trap state with an average energy of ca. 240 meV below the conduction band. The average energy of the trapping states did not change with the increase of the delay time, suggesting a singular electronic identity of the trap states.

2.
Analyst ; 138(7): 1966-70, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23431560

RESUMO

The dynamics of TiO2 conduction band electrons were followed with a novel broadband synchrotron-based transient mid-IR spectroscopy setup. The lifetime of conduction band electrons was found to be dependent on the injection method used. Direct band gap excitation results in a lifetime of 2.5 ns, whereas indirect excitation at 532 nm via Ru-N719 dye followed by injection from the dye into TiO2 results in a lifetime of 5.9 ns.

3.
Phys Rev Lett ; 109(5): 057402, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006206

RESUMO

Direct-gap gain up to 850 cm(-1) at 0.74 eV is measured and modeled in optically pumped Ge-on-Si layers for photoexcited carrier densities of 2.0 × 10(20) cm(-3). The gain spectra are correlated to carrier density via plasma-frequency determinations from reflection spectra. Despite significant gain, optical amplification cannot take place, because the carriers also generate pump-induced absorption of ≈7000 cm(-1). Parallel studies of III-V direct-gap InGaAs layers validate our spectroscopy and modeling. Our self-consistent results contradict current explanations of lasing in Ge-on-Si cavities.

4.
Opt Express ; 20(8): 9264-75, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513638

RESUMO

We propose an active waveguide design that provides both low propagation losses (< 20 dB/cm) and the capability for electrical pumping of the photonic crystal waveguide with a vertical contacting scheme. A careful estimation of a large number of parameters is required in order to obtain both properties. The proposed device supports single mode operation at the telecom wavelength λ = 1550 nm and is suitable for the implementation of in-plane active photonic crystal devices, such as semiconductor optical amplifiers and lasers.

5.
Rev Sci Instrum ; 82(6): 063101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721668

RESUMO

Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 µm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 µm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump-induced absorption and inversion processes present at the direct-gap energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...