Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669575

RESUMO

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Assuntos
Homeostase , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Animais , Camundongos , Neurônios/metabolismo , Drogas Ilícitas/efeitos adversos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais , Transtornos Relacionados ao Uso de Substâncias , Análise de Célula Única , Cocaína/farmacologia , Cálcio/metabolismo
2.
Sci Transl Med ; 15(723): eadh4453, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992155

RESUMO

Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.


Assuntos
Obesidade , Resposta de Saciedade , Humanos , Resposta de Saciedade/fisiologia , Apetite/fisiologia , Peso Corporal
3.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732251

RESUMO

Addiction prioritizes drug use over innate needs by "hijacking" brain circuits that direct motivation, but how this develops remains unclear. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we find that drugs of abuse augment ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell-type-specific manner. Combining "FOS-Seq", CRISPR-perturbations, and snRNA-seq, we identify Rheb as a shared molecular substrate that regulates cell-type-specific signal transductions in NAc while enabling drugs to suppress natural reward responses. Retrograde circuit mapping pinpoints orbitofrontal cortex which, upon activation, mirrors drug effects on innate needs. These findings deconstruct the dynamic, molecular, and circuit basis of a common reward circuit, wherein drug value is scaled to promote drug-seeking over other, normative goals.

4.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503198

RESUMO

Regulating the activity of discrete neuronal populations in living mammals after delivery of modified ion channels can be used to map functional circuits and potentially treat neurological diseases. Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity in motor circuits when exposed to magnetic fields. AAV-mediated delivery of a cre-dependent nanobody-TRPV1 calcium channel into the striatum of adenosine 2a (A2a) receptor-cre driver mice led to restricted expression within D2 neurons, resulting in motor freezing when placed in a 3T MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed focal activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus (STN) projection neurons in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and a corresponding improvement in motor rotational behavior during magnetic field exposure. These data demonstrate that AAV delivery of magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in vivo using clinically available devices for both preclinical analysis of circuit effects on behavior and potential human clinical translation.

5.
Cell Metab ; 35(3): 429-437.e5, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889282

RESUMO

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.


Assuntos
Intoxicação Alcoólica , Humanos , Animais , Camundongos , Etanol/toxicidade , Fatores de Crescimento de Fibroblastos/metabolismo , Encéfalo/metabolismo
7.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411386

RESUMO

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Assuntos
Tronco Encefálico , Leptina , Neurônios , Redução de Peso , Animais , Humanos , Masculino , Camundongos , Tronco Encefálico/metabolismo , Leptina/metabolismo , Camundongos Obesos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Orexina/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(43): e2211688119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252036

RESUMO

The nucleus accumbens (NAc) is a canonical reward center that regulates feeding and drinking but it is not known whether these behaviors are mediated by same or different neurons. We employed two-photon calcium imaging in awake, behaving mice and found that during the appetitive phase, both hunger and thirst are sensed by a nearly identical population of individual D1 and D2 neurons in the NAc that respond monophasically to food cues in fasted animals and water cues in dehydrated animals. During the consummatory phase, we identified three distinct neuronal clusters that are temporally correlated with action initiation, consumption, and cessation shared by feeding and drinking. These dynamic clusters also show a nearly complete overlap of individual D1 neurons and extensive overlap among D2 neurons. Modulating D1 and D2 neural activities revealed analogous effects on feeding versus drinking behaviors. In aggregate, these data show that a highly overlapping set of D1 and D2 neurons in NAc detect food and water reward and elicit concordant responses to hunger and thirst. These studies establish a general role of this mesolimbic pathway in mediating instinctive behaviors by controlling motivation-associated variables rather than conferring behavioral specificity.


Assuntos
Fome , Sede , Animais , Cálcio/metabolismo , Camundongos , Núcleo Accumbens/fisiologia , Recompensa , Água/metabolismo
9.
Nature ; 609(7928): 761-771, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071158

RESUMO

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Assuntos
Tronco Encefálico , Comportamento de Doença , Neurônios , Animais , Anorexia/complicações , Área Postrema/citologia , Área Postrema/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Comportamento de Doença/efeitos dos fármacos , Letargia/complicações , Lipopolissacarídeos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo
10.
Biol Psychiatry ; 91(10): 869-878, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593204

RESUMO

The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual's emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.


Assuntos
Apetite , Transtornos da Alimentação e da Ingestão de Alimentos , Encéfalo , Humanos , Hipotálamo , Obesidade
11.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673574

RESUMO

Contrasting with the predicted anorexigenic effect of increasing brain serotonin signaling, long-term use of selective serotonin reuptake inhibitor (SSRI) antidepressants correlates with body weight (BW) gain. This adverse outcome increases the risk of transitioning to obesity and interferes with treatment compliance. Here, we show that orally administered fluoxetine (Flx), a widely prescribed SSRI, increased BW by enhancing food intake in healthy mice at 2 different time points and through 2 distinct mechanisms. Within hours, Flx decreased the activity of a subset of brainstem serotonergic neurons by triggering autoinhibitory signaling through 5-hydroxytryptamine receptor 1a (Htr1a). Following a longer treatment period, Flx blunted 5-hydroxytryptamine receptor 2c (Htr2c) expression and signaling, decreased the phosphorylation of cAMP response element-binding protein (CREB) and STAT3, and dampened the production of pro-opiomelanocortin (POMC, the precursor of α-melanocyte stimulating hormone [α-MSH]) in hypothalamic neurons, thereby increasing food intake. Accordingly, exogenous stimulation of the melanocortin 4 receptor (Mc4r) by cotreating mice with Flx and lipocalin 2, an anorexigenic hormone signaling through this receptor, normalized feeding and BW. Flx and other SSRIs also inhibited CREB and STAT3 phosphorylation in a human neuronal cell line, suggesting that these noncanonical effects could also occur in individuals treated long term with SSRIs. By defining the molecular basis of long-term SSRI-associated weight gain, we propose a therapeutic strategy to counter this effect.


Assuntos
Antidepressivos/efeitos adversos , Fluoxetina/efeitos adversos , Receptor Tipo 4 de Melanocortina/metabolismo , Aumento de Peso/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Linhagem Celular , Fluoxetina/farmacologia , Humanos , Camundongos , Camundongos Knockout , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Fatores de Tempo , Aumento de Peso/genética
12.
Cell ; 184(22): 5687-5689, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715024
13.
Cell ; 184(21): 5266-5270, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562360

RESUMO

This year's Lasker Award recognizes Dieter Oesterhelt, Peter Hegemann, and Karl Deisseroth for their discovery of microbial opsins as light-activated ion conductors and the development of optogenetics using these proteins to regulate neural activity in awake, behaving animals. Optogenetics has revolutionized neuroscience and transformed our understanding of brain function.


Assuntos
Bactérias/metabolismo , Opsinas/metabolismo , Optogenética , Animais , Bacteriorodopsinas/metabolismo , Encéfalo/metabolismo , Channelrhodopsins/metabolismo , Cianobactérias/metabolismo , Humanos , Membrana Purpúrea
14.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34426522

RESUMO

The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Alelos , Consanguinidade , Exoma , Frequência do Gene/genética , Deriva Genética , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Migração Humana/tendências , Humanos , Turquia/etnologia , Sequenciamento do Exoma/métodos
15.
Mol Psychiatry ; 26(11): 7029-7046, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34099874

RESUMO

The subthalamic nucleus (STN) is a component of the basal ganglia and plays a key role to control movement and limbic-associative functions. STN modulation with deep brain stimulation (DBS) improves the symptoms of Parkinson's disease (PD) and obsessive-compulsive disorder (OCD) patients. However, DBS does not allow for cell-type-specific modulation of the STN. While extensive work has focused on elucidating STN functionality, the understanding of the role of specific cell types is limited. Here, we first performed an anatomical characterization of molecular markers for specific STN neurons. These studies revealed that most STN neurons express Pitx2, and that different overlapping subsets express Gabrr3, Ndnf, or Nos1. Next, we used optogenetics to define their roles in regulating locomotor and limbic functions in mice. Specifically, we showed that optogenetic photoactivation of STN neurons in Pitx2-Cre mice or of the Gabrr3-expressing subpopulation induces locomotor changes, and improves locomotion in a PD mouse model. In addition, photoactivation of Pitx2 and Gabrr3 cells induced repetitive grooming, a phenotype associated with OCD. Repeated stimulation prompted a persistent increase in grooming that could be reversed by fluoxetine treatment, a first-line drug therapy for OCD. Conversely, repeated inhibition of STNGabrr3 neurons suppressed grooming in Sapap3 KO mice, a model for OCD. Finally, circuit and functional mapping of STNGabrr3 neurons showed that these effects are mediated via projections to the globus pallidus/entopeduncular nucleus and substantia nigra reticulata. Altogether, these data identify Gabrr3 neurons as a key population in mediating the beneficial effects of STN modulation thus providing potential cellular targets for PD and OCD drug discovery.


Assuntos
Transtorno Obsessivo-Compulsivo , Doença de Parkinson , Núcleo Subtalâmico , Animais , Camundongos , Proteínas do Tecido Nervoso , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/terapia , Doença de Parkinson/terapia
16.
Genes Dev ; 35(9-10): 729-748, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888560

RESUMO

The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.


Assuntos
Adipócitos/citologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Complexo Mediador/genética , Camundongos , Ligação Proteica/genética , Domínios Proteicos
17.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761312

RESUMO

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Assuntos
Comportamento Alimentar/fisiologia , Córtex Insular/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Hipernutrição/etiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Córtex Insular/efeitos dos fármacos , Córtex Insular/metabolismo , Córtex Insular/patologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia
18.
Am J Physiol Endocrinol Metab ; 320(2): E326-E332, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284086

RESUMO

Interoceptive signals from gut and adipose tissue and sensory cues from the environment are integrated by hubs in the brain to regulate feeding behavior and maintain homeostatic control of body weight. In vivo neural recordings have revealed that these signals control the activity of multiple layers of hunger neurons and eating is not only the result of feedback correction to a set point, but can also be under the influence of anticipatory regulations. A series of recent technical developments have revealed how peripheral and sensory signals, in particular, from the gut are conveyed to the brain to integrate neural circuits. Here, we describe the mechanisms involved in gastrointestinal stimulation by nutrients and how these signals act on the hindbrain to generate motivated behaviors. We also consider the organization of multidirectional intra- and extrahypothalamic circuits and how this has created a framework for understanding neural control of feeding.


Assuntos
Regulação do Apetite , Encéfalo/fisiologia , Trato Gastrointestinal/fisiologia , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Microbioma Gastrointestinal , Homeostase/fisiologia , Humanos , Fome/fisiologia , Transdução de Sinais/fisiologia
19.
Elife ; 92020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894221

RESUMO

Stress has pleiotropic physiologic effects, but the neural circuits linking stress to these responses are not well understood. Here, we describe a novel population of lateral septum neurons expressing neurotensin (LSNts) in mice that are selectively tuned to specific types of stress. LSNts neurons increase their activity during active escape, responding to stress when flight is a viable option, but not when associated with freezing or immobility. Chemogenetic activation of LSNts neurons decreases food intake and body weight, without altering locomotion and anxiety. LSNts neurons co-express several molecules including Glp1r (glucagon-like peptide one receptor) and manipulations of Glp1r signaling in the LS recapitulates the behavioral effects of LSNts activation. Activation of LSNts terminals in the lateral hypothalamus (LH) also decreases food intake. These results show that LSNts neurons are selectively tuned to active escape stress and can reduce food consumption via effects on hypothalamic pathways.


Assuntos
Ingestão de Alimentos/fisiologia , Reação de Fuga/fisiologia , Sistema Límbico/fisiologia , Neurônios/fisiologia , Animais , Ansiedade/fisiopatologia , Peso Corporal/fisiologia , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
20.
Sci Rep ; 10(1): 13096, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753716

RESUMO

Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.


Assuntos
Campos Magnéticos , Espécies Reativas de Oxigênio/metabolismo , Animais , Ferritinas/metabolismo , Células HEK293 , Humanos , Ratos , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...