Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1157, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957280

RESUMO

Optimal clinical outcomes in cancer treatments could be achieved through the development of reliable, precise ex vivo tumor models that function as drug screening platforms for patient-targeted therapies. Microfluidic tumor-on-chip technology is emerging as a preferred tool since it enables the complex set-ups and recapitulation of the physiologically relevant physical microenvironment of tumors. In order to overcome the common hindrances encountered while using this technology, a fully 3D-printed device was developed that sustains patient-derived multicellular spheroids long enough to conduct multiple drug screening tests. This tool is both cost effective and possesses four necessary characteristics of effective microfluidic devices: transparency, biocompatibility, versatility, and sample accessibility. Compelling correlations which demonstrate a clinical proof of concept were found after testing and comparing different chemotherapies on tumor spheroids, derived from ten patients, to their clinical outcomes. This platform offers a potential solution for personalized medicine by functioning as a predictive drug-performance tool.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
2.
ACS Appl Mater Interfaces ; 15(43): 50330-50343, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861446

RESUMO

Multifunctional drug-loaded polymer-metal nanocapsules have attracted increasing attention in drug delivery due to their multifunctional potential endowed by drug activity and response to physicochemical stimuli. Current chemical synthesis methods of polymer/metal capsules require specific optimization of the different components to produce particles with precise properties, being particularly complex for Janus structures combining polymers and ferromagnetic and highly reactive metals. With the aim to generate tunable synergistic nanotherapeutic actuation with enhanced drug effects, here we demonstrate a versatile hybrid chemical/physical fabrication strategy to incorporate different functional metals with tailored magnetic, optical, or chemical properties on solid drug-loaded polymer nanoparticles. As archetypical examples, we present poly(lactic-co-glycolic acid) (PLGA) nanoparticles (diameters 100-150 nm) loaded with paclitaxel, indocyanine green, or erythromycin that are half-capped by either Fe, Au, or Cu layers, respectively, with application in three biomedical models. The Fe coating on paclitaxel-loaded nanocapsules permitted efficient magnetic enhancement of the cancer spheroid assembly, with 40% reduction of the cross-section area after 24 h, as well as a higher paclitaxel effect. In addition, the Fe-PLGA nanocapsules enabled external contactless manipulation of multicellular cancer spheroids with a speed of 150 µm/s. The Au-coated and indocyanine green-loaded nanocapsules demonstrated theranostic potential and enhanced anticancer activity in vitro and in vivo due to noninvasive fluorescence imaging with long penetration near-infrared (NIR) light and simultaneous photothermal-photodynamic actuation, showing a 3.5-fold reduction in the tumor volume growth with only 5 min of NIR illumination. Finally, the Cu-coated erythromycin-loaded nanocapsules exhibited enhanced antibacterial activity with a 2.5-fold reduction in the MIC50 concentration with respect to the free or encapsulated drug. Altogether, this technology can extend a nearly unlimited combination of metals, polymers, and drugs, thus enabling the integration of magnetic, optical, and electrochemical properties in drug-loaded nanoparticles to externally control and improve a wide range of biomedical applications.


Assuntos
Nanocápsulas , Nanocápsulas/química , Verde de Indocianina/farmacologia , Verde de Indocianina/química , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Polímeros/química , Eritromicina/farmacologia
3.
Sci Transl Med ; 15(699): eabo0684, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285403

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors are used to treat many advanced-stage epithelial cancers but induce severe skin toxicities in most treated patients. These side effects lead to a deterioration in the quality of life of the patients and compromise the anticancer treatment. Current treatment strategies for these skin toxicities focus on symptom reduction rather than preventing the initial trigger that causes the toxicity. In this study, we developed a compound and method for treating "on-target" skin toxicity by blocking the drug at the site of toxicity without reducing the systemic dose reaching the tumor. We first screened for small molecules that effectively blocked the binding of anti-EGFR monoclonal antibodies to EGFR and identified a potential candidate, SDT-011. In silico docking predicted that SDT-011 interacted with the same residues on EGFR found to be important for the binding of EGFR inhibitors cetuximab and panitumumab. Binding of SDT-011 to EGFR reduced the binding affinity of cetuximab to EGFR and could reactivate EGFR signaling in keratinocyte cell lines, ex vivo cetuximab-treated whole human skin, and A431-injected mice. Specific small molecules were topically applied and were delivered via a slow-release system derived from biodegradable nanoparticles that penetrate the hair follicles and sebaceous glands, within which EGFR is highly expressed. Our approach has the potential to reduce skin toxicity caused by EGFR inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Dermatopatias , Humanos , Animais , Camundongos , Cetuximab/efeitos adversos , Qualidade de Vida , Anticorpos Monoclonais/uso terapêutico , Panitumumabe/efeitos adversos , Antineoplásicos/toxicidade , Neoplasias/tratamento farmacológico
4.
Bio Protoc ; 12(7): e4375, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35530520

RESUMO

Delivery of drugs through the skin is a major challenge in the field of drug delivery systems. Quantification of materials, and specifically nanoparticles, within the skin layers is essential for the development of advanced topical and transdermal delivery systems. We have developed a technique for ex-vivo segmentation and evaluation of human skin samples treated with fluorescent nanoparticles. The method is based on horizontal cryosections of skin samples, followed by confocal microscopy and image analysis. This protocol is relatively simple to perform with basic histological tools, thus it can serve for various dermatology assays.

5.
Nanomedicine ; 36: 102414, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171468

RESUMO

Drug penetration through the skin is significant for both transdermal and dermal delivery. One mechanism that has attracted attention over the last two decades is the transport pathway of nanoparticles via hair follicle, through the epidermis, directly to the pilosebaceous unit and blood vessels. Studies demonstrate that particle size is an important factor for drug penetration. However, in order to gain more information for the purpose of improving this mode of drug delivery, a thorough understanding of the optimal physical particle properties is needed. In this study, we fabricated fluorescently labeled gold nanoparticles (GNP) with a tight control over the size and shape. The effect of the particles' physical parameters on follicular penetration was evaluated histologically. We used horizontal human skin sections and found that the optimal size for polymeric particles is 0.25 µm. In addition, shape penetration experiments revealed gold nanostars' superiority over spherical particles. Our findings suggest the importance of the particles' physical properties in the design of nanocarriers delivered to the pilosebaceous unit.


Assuntos
Ouro , Folículo Piloso/metabolismo , Nanopartículas Metálicas , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
6.
Oncotarget ; 8(20): 32706-32721, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28415753

RESUMO

Metastatic spread is the leading cause for cancer-related mortality, with the lungs being a major site for metastatic seeding. Available therapies for patients with metastatic disease are extremely limited. Therefore, there is a desperate need for new strategies to prevent or limit metastatic dissemination and treat existing metastases. The metastatic cascade is highly complex and is affected by multiple factors related to both tumor cells themselves and the microenvironment in the future site of metastasis. We hypothesized that modifying the lung microenvironment by blocking central ubiquitous signals may affect metastatic seeding in the lungs. Given the high basal levels of the Receptor for Advanced Glycation End products (RAGE) in the pulmonary tissue, and its pro-inflammatory properties, we investigated the consequences of interfering with its ligand; High Mobility Group Box 1 (HMGB1). To this end, we tested the effect of Carbenoxolone, an HMGB1 antagonist, on primary tumor growth and metastatic progression in several murine tumor models. We show that antagonizing HMGB1 prevents the adhesion and colonization of cancer cells in the lungs through the reduction of their adhesion and cell-cell interaction both in vitro and in vivo. We demonstrated that these activities are mediated by downregulation of the adhesion molecule Intercellular Adhesion Molecule 1 (ICAM1) and ultimately result in reduced metastatic burden. Carbenoxolone decreases significantly lung metastases formation and can be used potentially as prophylactic therapy for metastatic diseases.


Assuntos
Carbenoxolona/administração & dosagem , Proteína HMGB1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Animais , Carbenoxolona/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...