Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617330

RESUMO

Objectives: Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with MASH. Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcriptoin and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. Methods: We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre+Cc1 fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. Results: LratCre+Cc1 fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HDCs. This was inhibited by nicotinic acid treatment which stemmed the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. Conclusions: Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.

2.
J Hepatol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508241

RESUMO

BACKGROUND: Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD), the fastest growing cause of hepatocellular carcinoma worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells depletes senescent HSCs and attenuates fibrosis in murine liver injury models, including MASLD. However, the comprehensive features of senescent HSCs in MASLD, as well as their cellular ontogeny have not been characterized. AIMS AND METHODS: Our aims were to comprehensively characterize and define the origin of senescent HSCs in human and murine MASLD by integrating senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single nuclear RNA-sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs, and mapped the evolution of uPAR expression in MASLD. RESULTS: Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASLD, the magnitude and cell-specificity of its expression evolve with disease stage, such that in early disease, uPAR is more specific to activated and senescent HSCs, and in late disease, uPAR is also expressed by myeloid-lineage cells including Trem2+ macrophages and myeloid-derived suppressor cells. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASLD that could be exploited as therapeutic targets. CONCLUSIONS: These data define features of HSC senescence in human and murine MASLD, establishing an important blueprint to target these cells as part of future antifibrotic therapy. LAY SUMMARY: Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic diseases of the liver. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in metabolic dysfunction-associated steatotic liver disease (MASLD) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and immune cells as liver injury advances. We have integrated high resolution single nuclei sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future efforts to clear senescent HSCs to treat fibrosis.

3.
Adv Sci (Weinh) ; 11(18): e2307734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430535

RESUMO

The hepatic content of amyloid beta (Aß) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aß deficiency in the liver. This is especially relevant in view of recent advances in anti-Aß therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aß in transgenic AD mice immunized with Aß antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aß absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-ß (TGFß), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aß42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aß42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aß as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Fígado , Camundongos Transgênicos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Fígado/metabolismo , Fígado/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Camundongos Knockout , Camundongos Endogâmicos C57BL
4.
Hepatology ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38373106

RESUMO

BACKGROUND AND AIMS: Sustained inflammation and hepatocyte injury in chronic liver disease activate HSCs to transdifferentiate into fibrogenic, contractile myofibroblasts. We investigated the role of protocadherin 7 (PCDH7), a cadherin family member not previously characterized in the liver, whose expression is restricted to HSCs. APPROACH AND RESULTS: We created a PCDH7 fl/fl mouse line, which was crossed to lecithin retinol acyltransferase-Cre mice to generate HSC-specific PCDH7 knockout animals. HSC contraction in vivo was tested in response to the HSC-selective vasoconstrictor endothelin-1 using intravital multiphoton microscopy. To establish a PCDH7 null HSC line, cells were isolated from PCDH7 fl/fl mice and infected with adenovirus-expressing Cre. Hepatic expression of PCDH7 was strictly restricted to HSCs. Knockout of PCDH7 in vivo abrogated HSC-mediated sinusoidal contraction in response to endothelin-1. In cultured HSCs, loss of PCDH7 markedly attenuated contractility within collagen gels and led to altered gene expression in pathways governing adhesion and vasoregulation. Loss of contractility in PCDH7 knockout cells was impaired Rho-GTPase signaling, as demonstrated by altered gene expression, reduced assembly of F-actin fibers, and loss of focal adhesions. CONCLUSIONS: The stellate cell-specific cadherin, PCDH7, is a novel regulator of HSC contractility whose loss leads to cytoskeletal remodeling and sinusoidal relaxation.

6.
Diabetes Metab J ; 48(2): 161-169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273792

RESUMO

Metabolic dysfunction-associated steatotic (fatty) liver disease (MASLD), previously termed non-alcoholic fatty liver disease, is a worldwide epidemic that can lead to hepatic inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The disease is typically a component of the metabolic syndrome that accompanies obesity, and is often overlooked because the liver manifestations are clinically silent until late-stage disease is present (i.e., cirrhosis). Moreover, Asian populations, including Koreans, have a higher fraction of patients who are lean, yet their illness has the same prognosis or worse than those who are obese. Nonetheless, ongoing injury can lead to hepatic inflammation and ballooning of hepatocytes as classic features. Over time, fibrosis develops following activation of hepatic stellate cells, the liver's main fibrogenic cell type. The disease is usually more advanced in patients with type 2 diabetes mellitus, indicating that all diabetic patients should be screened for liver disease. Although there has been substantial progress in clarifying pathways of injury and fibrosis, there no approved therapies yet, but current research seeks to uncover the pathways driving hepatic inflammation and fibrosis, in hopes of identifying new therapeutic targets. Emerging molecular methods, especially single cell sequencing technologies, are revolutionizing our ability to clarify mechanisms underlying MASLD-associated fibrosis and HCC.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/patologia , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Cirrose Hepática/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Obesidade/complicações , Inflamação/complicações
7.
bioRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293175

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) can progress to cirrhosis and liver cancer. There are no approved medical therapies to prevent or reverse disease progression. Fructose and its metabolism in the liver play integral roles in MASH pathogenesis and progression. Here we focus on mannose, a simple sugar, which dampens hepatic stellate cell activation and mitigates alcoholic liver disease in vitro and in vivo . In the well-validated FAT-MASH murine model, oral mannose supplementation improved both liver steatosis and fibrosis at low and high doses, whether administered either at the onset of the model ("Prevention") or at week 6 of the 12-week MASH regimen ("Reversal"). The in vivo anti-fibrotic effects of mannose supplementation were validated in a second model of carbon tetrachloride-induced liver fibrosis. In vitro human and mouse primary hepatocytes revealed that the anti-steatotic effects of mannose are dependent on the presence of fructose, which attenuates expression of ketohexokinase (KHK), the main enzyme in fructolysis. KHK is decreased with mannose supplementation in vivo and in vitro, and overexpression of KHK abrogated the anti-steatotic effects of mannose. Our study identifies mannose as a simple, novel therapeutic candidate for MASH that mitigates metabolic dysregulation and exerts anti-fibrotic effects.

8.
J Hepatol ; 80(2): 335-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37879461

RESUMO

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fígado/patologia , Inteligência Artificial , Biópsia , Prevalência
9.
Kidney Int ; 105(3): 540-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159678

RESUMO

Clinical studies suggest that non-alcoholic steatohepatitis (NASH) is an independent risk factor for chronic kidney disease (CKD), but causality and mechanisms linking these two major diseases are lacking. To assess whether NASH can induce CKD, we have characterized kidney function, histological features, transcriptomic and lipidomic profiles in a well-validated murine NASH model. Mice with NASH progressively developed significant podocyte foot process effacement, proteinuria, glomerulosclerosis, tubular epithelial cell injury, lipid accumulation, and interstitial fibrosis. The progression of kidney fibrosis paralleled the severity of the histologic NASH-activity score. Significantly, we confirmed the causal link between NASH and CKD by orthotopic liver transplantation, which attenuated proteinuria, kidney dysfunction, and fibrosis compared with control sham operated mice. Transcriptomic analysis of mouse kidney cortices revealed differentially expressed genes that were highly enriched in mitochondrial dysfunction, lipid metabolic process, and insulin signaling pathways in NASH-induced CKD. Lipidomic analysis of kidney cortices further revealed that phospholipids and sphingolipids were the most significantly changed lipid species. Notably, we found similar kidney histological changes in human NASH and CKD. Thus, our results confirm a causative role of NASH in the development of CKD, reveal potential pathophysiologic mechanisms of NASH-induced kidney injury, and established a valuable model to study the pathogenesis of NASH-associated CKD. This is an important feature of fatty liver disease that has been largely overlooked but has clinical and prognostic importance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Modelos Animais de Doenças , Fibrose , Insuficiência Renal Crônica/patologia , Fosfolipídeos/metabolismo , Proteinúria/patologia , Fígado/patologia
10.
Environ Epidemiol ; 7(5): e268, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37840860

RESUMO

Background: Nonalcoholic fatty liver disease (NAFLD) is a disease characterized by lipid accumulation within hepatocytes, ranging from simple steatosis to steatohepatitis, in the absence of secondary causes of hepatic fat accumulation. Although air pollution (AP) has been associated with several conditions related to NAFLD (e.g., metabolic syndrome, type 2 diabetes mellitus), few studies have explored an association between AP and NAFLD. The aim of the study was to investigate whether exposure to AP is associated with NAFLD prevalence. Methods: We used baseline cross-sectional data (2000-2003) of the Heinz-Nixdorf-Recall cohort study in Germany (baseline n = 4,814), a prospective population-based cohort study in the urbanized Ruhr Area. Mean annual exposure to size-fractioned particulate matter (PM10, PM2.5, PMcoarse, and PM2.5abs), nitrogen dioxide, and particle number was assessed using two different exposure models: a chemistry transport dispersion model, which captures urban background AP exposure on a 1 km2 grid at participant's residential addresses, and a land use regression model, which captures point-specific AP exposure at participant's residential addresses. NAFLD was assessed with the fatty liver index (n = 4,065), with NAFLD defined as fatty liver index ≥60. We estimated ORs of NAFLD per interquartile range of exposure using logistic regression, adjusted for socio-demographic and lifestyle variables. Results: We observed a NAFLD prevalence of 31.7% (n = 1,288). All air pollutants were positively associated with NAFLD prevalence, with an OR per interquartile range for PM2.5 of 1.11 (95% confidence interval [CI] = 1.00, 1.24) using chemistry transport model, and 1.06 (95% CI = 0.94, 1.19) using the land use regression model, respectively. Conclusion: There was a positive association between long-term AP exposure and NAFLD.

11.
Sci Transl Med ; 15(716): eadi0759, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792957

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Cirrose Hepática/metabolismo , Fígado Gorduroso/complicações , Comunicação Celular
12.
Sci Transl Med ; 15(715): eade2966, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756380

RESUMO

Hepatic fibrosis is the primary determinant of mortality in patients with metabolic dysfunction-associated steatohepatitis (MASH). Transforming growth factor-ß (TGFß), a master profibrogenic cytokine, is a promising therapeutic target that has not yet been translated into an effective therapy in part because of liabilities associated with systemic TGFß antagonism. We have identified that soluble folate receptor γ (FOLR3), which is expressed in humans but not in rodents, is a secreted protein that is elevated in the livers of patients with MASH but not in those with metabolic dysfunction-associated steatotic liver disease, those with type II diabetes, or healthy individuals. Global proteomics showed that FOLR3 was the most highly significant MASH-specific protein and was positively correlated with increasing fibrosis stage, consistent with stimulation of activated hepatic stellate cells (HSCs), which are the key fibrogenic cells in the liver. Exposure of HSCs to exogenous FOLR3 led to elevated extracellular matrix (ECM) protein production, an effect synergistically potentiated by TGFß1. We found that FOLR3 interacts with the serine protease HTRA1, a known regulator of TGFBR, and activates TGFß signaling. Administration of human FOLR3 to mice induced severe bridging fibrosis and an ECM pattern resembling human MASH. Our study thus uncovers a role of FOLR3 in enhancing fibrosis.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta , Células Estreladas do Fígado , Ácido Fólico
13.
Nat Rev Gastroenterol Hepatol ; 20(10): 647-661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550577

RESUMO

Liver fibrosis is a substantial risk factor for the development and progression of liver cancer, which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Studies utilizing cell fate mapping and single-cell transcriptomics techniques have identified quiescent perisinusoidal hepatic stellate cells (HSCs) as the primary source of activated collagen-producing HSCs and liver cancer-associated fibroblasts (CAFs) in HCC and liver metastasis, complemented in iCCA by contributions from portal fibroblasts. At the same time, integrative computational analysis of single-cell, single-nucleus and spatial RNA sequencing data have revealed marked heterogeneity among HSCs and CAFs, with distinct subpopulations displaying unique gene expression signatures and functions. Some of these subpopulations have divergent roles in promoting or inhibiting liver fibrogenesis and carcinogenesis. In this Review, we discuss the dual roles of HSC subpopulations in liver fibrogenesis and their contribution to liver cancer promotion, progression and metastasis. We review the transcriptomic and functional similarities between HSC and CAF subpopulations, highlighting the pathways that either promote or prevent fibrosis and cancer, and the immunological landscape from which these pathways emerge. Insights from ongoing studies will yield novel strategies for developing biomarkers, assessing prognosis and generating new therapies for both HCC and iCCA prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia
14.
Eur J Pediatr ; 182(8): 3765-3774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37310499

RESUMO

Nonalcoholic fatty liver disease (NAFLD) affects an estimated 17% of pregnant patients in the USA. However, there are limited data on the impact of maternal NAFLD on pediatric outcomes. We prospectively evaluated outcomes in infants born to mothers with and without NAFLD in pregnancy over their first 2 years of life. Maternal subjects were identified through an ongoing prospective study in which pregnant individuals were screened for NAFLD. Pediatric outcomes of infants born to these mothers-including adverse neonatal outcomes and weight and weight-for-length percentile at 6, 12, 18, and 24 months-were prospectively evaluated. Multivariate logistic regression was performed to evaluate the association of maternal NAFLD with pediatric outcomes, as well as to adjust for potentially confounding maternal characteristics. Six hundred thirty-eight infants were included in our cohort. The primary outcomes assessed were weight and growth throughout the first 2 years of life. Maternal NAFLD was also not associated with increased infant birth weight or weight-for-gestational-age percentile or weight or weight-for-length percentile over the first 2 years of life. Maternal NAFLD was significantly associated with very premature delivery before 32 weeks, even after adjustment for confounding maternal characteristics (aOR = 2.83, p = 0.05). Maternal NAFLD was also significantly associated with neonatal jaundice, including after adjusting for maternal race (aOR = 1.67, p = 0.03). However, maternal NAFLD was not significantly associated with any other adverse neonatal outcomes.    Conclusion: Maternal NAFLD may be independently associated with very premature birth and neonatal jaundice but was not associated with other adverse neonatal outcomes. Maternal NAFLD was also not associated with any differences in infant growth over the first 2 years of life. What is Known: • Maternal NAFLD in pregnancy may be associated with adverse pregnancy and neonatal outcomes, but the findings are inconsistent across the literature. What is New: • Maternal NAFLD is not associated with any differences in weight at birth or growth over the first 2 years of life. • Maternal NAFLD is associated with very premature delivery and neonatal jaundice, but is not associated with other adverse neonatal outcomes.


Assuntos
Icterícia Neonatal , Hepatopatia Gordurosa não Alcoólica , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Lactente , Humanos , Criança , Pré-Escolar , Mães , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos Prospectivos , Icterícia Neonatal/epidemiologia , Icterícia Neonatal/etiologia , Complicações na Gravidez/epidemiologia , Resultado da Gravidez
15.
Sci Signal ; 16(787): eadf6696, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253090

RESUMO

Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.


Assuntos
Células Estreladas do Fígado , Fígado , Neurotrofina 3 , Animais , Camundongos , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Neurotrofina 3/metabolismo
16.
Methods Mol Biol ; 2669: 129-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247058

RESUMO

Hepatic stellate cells (HSCs) are the major cellular source of extracellular matrix production in the liver. Therefore, this cell population has received considerable attention in studies investigating fundamental features of hepatic fibrosis. However, the limited supply and ever-increasing demand for these cells, combined with the additional tightening of formal standards in animal welfare policy, make working with these primary cells increasingly difficult. Moreover, researchers working in biomedical research are challenged to implement the 3R principle of "replacement," "reduction," and "refinement" in their work. This principle, originally proposed in 1959 by William M. S. Russell and Rex L. Burch, is now widely endorsed by legislators and regulatory bodies in many countries as a roadmap to tackle the ethical dilemma associated with animal experimentation. As such, working with immortalized HSC lines is a good alternative to limit the number of animals and their suffering in biomedical research. This article summarizes issues that need to be considered when working with established HSC cell lines and provides general guidelines for the maintenance and storage of HSC lines from mouse, rat, and humans.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Ratos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Células de Kupffer , Linhagem Celular
17.
J Hepatol ; 79(2): 552-566, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37061196

RESUMO

Successful development of treatments for non-alcoholic fatty liver disease and its progressive form, non-alcoholic steatohepatitis (NASH), has been challenging. Because NASH and fibrosis lead to progression towards cirrhosis and clinical outcomes, approaches have either sought to attenuate metabolic dysregulation and cell injury, or directly target the inflammation and fibrosis that ensue. Targets for reducing the activation of inflammatory cascades include nuclear receptor agonists (e.g. resmetirom, lanifibranor, obeticholic acid), modulators of lipotoxicity (e.g. aramchol, acetyl-CoA carboxylase inhibitors) or modification of genetic variants (e.g. PNPLA3 gene silencing). Extrahepatic inflammatory signals from the circulation, adipose tissue or gut are targets of hormonal agonists (semaglutide, tirzepatide, FGF19/FGF21 analogues), microbiota or lifestyle interventions. Stress signals and hepatocyte death activate immune responses, engaging innate (macrophages, innate lymphocyte populations) and adaptive (auto-aggressive T cells) mechanisms. Therapies have also been developed to blunt immune cell activation, recruitment (chemokine receptor inhibitors), and responses (e.g. galectin-3 inhibitors, anti-platelet drugs). The disease-driving pathways of NASH converge to elicit fibrosis, which is reversible. The activation of hepatic stellate cells into matrix-producing myofibroblasts can be inhibited by antagonising soluble factors (e.g. integrins, cytokines), cellular crosstalk (e.g. with macrophages), and agonising nuclear receptor signalling. In advanced fibrosis, cell therapy with restorative macrophages or reprogrammed (CAR) T cells may accelerate repair through hepatic stellate cell deactivation or killing, or by enhancing matrix degradation. Heterogeneity of disease - either due to genetics or divergent disease drivers - is an obstacle to defining effective drugs for all patients with NASH that will be overcome incrementally.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/etiologia , Hepatócitos/metabolismo , Anti-Inflamatórios/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fígado/patologia
18.
Hepatology ; 78(2): 637-648, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013924

RESUMO

The field of hepatology has made impressive progress over its ~75 years of existence. Advances in understanding liver function and its dysregulation in disease, genetic determinants of disease, antiviral therapy, and transplantation have transformed the lives of patients. However, there are still significant challenges that require ongoing creativity and discipline, particularly with the emergence of fatty liver diseases, as well as managing autoimmune disease, cancer, and liver disease in children. Diagnostic advances are urgently needed to accelerate risk stratification and efficient testing of new agents with greater precision in enriched populations. Integrated, holistic care models should be extended beyond liver cancer to diseases like NAFLD with systemic manifestations or extrahepatic comorbidities such as cardiovascular disease, diabetes, addiction, and depressive disorders. To meet the growing burden of asymptomatic liver disease, the workforce will need to be expanded by incorporating more advanced practice providers and educating other specialists. The training of future hepatologists will benefit from incorporating emerging skills in data management, artificial intelligence, and precision medicine. Continued investment in basic and translational science is crucial for further progress. The challenges ahead are significant, but with collective effort, the field of hepatology will continue to make progress and overcome obstacles.


Assuntos
Gastroenterologia , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Inteligência Artificial
19.
Nat Rev Gastroenterol Hepatol ; 20(8): 487-503, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932227

RESUMO

Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation, nonalcoholic steatohepatitis (NASH), has a global prevalence of 20-25% and is a major public health problem. Its incidence is increasing in parallel to the rise in obesity, diabetes and metabolic syndrome. Progression from NASH to NASH-related hepatocellular carcinoma (HCC) (~2% of cases per year) is influenced by many factors, including the tissue and immune microenvironment, germline mutations in PNPLA3, and the microbiome. NASH-HCC has unique molecular and immune traits compared with other aetiologies of HCC and is equally prevalent in men and women. Comorbidities associated with NASH, such as obesity and diabetes mellitus, can prevent the implementation of potentially curative therapies in certain patients; nonetheless, outcomes are similar in patients who receive treatment. NASH-HCC at the early to intermediate stages is managed with surgery and locoregional therapies, whereas advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune-checkpoint inhibitors. In this Review, we present the latest knowledge of the pathogenic mechanisms and clinical management of NASH-HCC. We discuss data highlighting the controversy over varying responses to immune-checkpoint inhibitors according to underlying aetiology and suggest that the future of NASH-HCC management lies in improved surveillance, targeted combination therapies to overcome immune evasion, and identifying biomarkers to recognize treatment responders.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Inibidores de Checkpoint Imunológico , Progressão da Doença , Obesidade/complicações , Microambiente Tumoral
20.
Clin Gastroenterol Hepatol ; 21(10): 2578-2587.e11, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36610497

RESUMO

BACKGROUND & AIMS: Genetic variants affecting liver disease risk vary among racial and ethnic groups. Hispanics/Latinos in the United States have a high prevalence of PNPLA3 I148M, which increases liver disease risk, and a low prevalence of HSD17B13 predicted loss-of-function (pLoF) variants, which reduce risk. Less is known about the prevalence of liver disease-associated variants among Hispanic/Latino subpopulations defined by country of origin and genetic ancestry. We evaluated the prevalence of HSD17B13 pLoF variants and PNPLA3 I148M, and their associations with quantitative liver phenotypes in Hispanic/Latino participants from an electronic health record-linked biobank in New York City. METHODS: This study included 8739 adult Hispanic/Latino participants of the BioMe biobank with genotyping and exome sequencing data. We estimated the prevalence of Hispanic/Latino individuals harboring HSD17B13 and PNPLA3 variants, stratified by genetic ancestry, and performed association analyses between variants and liver enzymes and Fibrosis-4 (FIB-4) scores. RESULTS: Individuals with ancestry from Ecuador and Mexico had the lowest frequency of HSD17B13 pLoF variants (10%/7%) and the highest frequency of PNPLA3 I148M (54%/65%). These ancestry groups had the highest outpatient alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and the largest proportion of individuals with a FIB-4 score greater than 2.67. HSD17B13 pLoF variants were associated with reduced ALT level (P = .002), AST level (P < .001), and FIB-4 score (P = .045). PNPLA3 I148M was associated with increased ALT level, AST level, and FIB-4 score (P < .001 for all). HSD17B13 pLoF variants mitigated the increase in ALT conferred by PNPLA3 I148M (P = .006). CONCLUSIONS: Variation in HSD17B13 and PNPLA3 variants across genetic ancestry groups may contribute to differential risk for liver fibrosis among Hispanic/Latino individuals.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Predisposição Genética para Doença , Hispânico ou Latino/genética , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...