Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400388, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465502

RESUMO

Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.

2.
Nature ; 626(7997): 177-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123686

RESUMO

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Assuntos
Antibacterianos , Aprendizado Profundo , Descoberta de Drogas , Animais , Humanos , Camundongos , Antibacterianos/química , Antibacterianos/classificação , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Redes Neurais de Computação , Algoritmos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Modelos Animais de Doenças , Pele/efeitos dos fármacos , Pele/microbiologia , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências
3.
Sci Rep ; 13(1): 23016, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155173

RESUMO

Proton exchange membrane fuel cells (PEMFCs) are seen as one possible future means of driving the change towards a zero-emission society. In a civil aircraft, fuel cell systems can have multiple potential benefits, such as reduced noise, lowered emissions and higher fuel economy compared to jet aircraft. For controlling the fuel cell temperature, thermal management systems are required which can be optimized for aircraft applications regarding their weight and reliability. In this work, a simplified and light-weight thermal management system relying on hydrogen cooling is presented and analysed. To investigate the feasibility, a test rig and a three-dimensional, singular channel model in ANSYS Fluent were designed. Fuel cell temperature could be maintained within the set threshold in the model and the test rig, thus showing that controlling the fuel cell temperature via the hydrogen reactant flow is a viable alternative thermal management system. Results from the model indicate that both the hydrogen mass flow and hydrogen inlet temperature should be used to control the fuel cell temperature. Furthermore, operating the fuel cell at medium to low current densities is favourable for hydrogen cooling. Future studies will explore alternate flow field designs to facilitate thermal management system relying on hydrogen.

4.
Nature ; 618(7966): 733-739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344647

RESUMO

Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.


Assuntos
Aderência Bacteriana , Colesterol , Entropia , Proteínas , Adsorção , Proteínas/química , Molhabilidade , Colesterol/química
5.
Front Oncol ; 12: 961473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158640

RESUMO

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematologic malignancies characterized by clonal hematopoiesis, one or more cytopenias such as anemia, neutropenia, or thrombocytopenia, abnormal cellular maturation, and a high risk of progression to acute myeloid leukemia. The bone marrow microenvironment (BMME) in general and mesenchymal stromal cells (MSCs) in particular contribute to both the initiation and progression of MDS. However, little is known about the role of MSC-derived extracellular matrix (ECM) in this context. Therefore, we performed a comparative analysis of in vitro deposited MSC-derived ECM of different MDS subtypes and healthy controls. Atomic force microscopy analyses demonstrated that MDS ECM was significantly thicker and more compliant than those from healthy MSCs. Scanning electron microscopy showed a dense meshwork of fibrillar bundles connected by numerous smaller structures that span the distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures were detectable at high abundance in MDS ECM as white, sponge-like arrays on top of the fibrillar network. Quantification by Blyscan assay confirmed these observations, with higher concentrations of sulfated GAGs in MDS ECM. Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan (HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of N-acetyl-galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the matrix of MSCs from LR-MDS patients were found to correlate with enhanced HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells from healthy donors with low molecular weight HA resulted in an increased expression of various pro-inflammatory cytokines suggesting a contribution of the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic stem and progenitor cells (HSPCs) displayed an impaired differentiation potential after cultivation on MDS ECM and modified morphology accompanied by decreased integrin expression which mediate cell-matrix interaction. In summary, we provide evidence for structural alterations of the MSC-derived ECM in both LR- and HR-MDS. GAGs may play an important role in this remodeling processes during the malignant transformation which leads to the observed disturbance in the support of normal hematopoiesis.

6.
J Mater Chem B ; 10(10): 1663-1674, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195648

RESUMO

The soft colloidal probe (SCP) assay is a highly versatile sensing principle employing micrometer-sized hydrogel particles as optomechanical transducer elements. We report the synthesis, optimization, and conjugation of SCPs with defined narrow size distribution and specifically tailored mechanical properties and functionalities for integration into a microinterferometric optomechanical biosensor platform. Droplet-based microfluidics was used to crosslink polyethylene glycol (PEG) macromonomers by photocrosslinking and thiol-Michael addition. The effect of several synthesis parameters, i.e. PEG and radical initiator solid content, molecular weight and architecture of macromonomers, as well as UV exposure time and energy, were examined. SCPs were characterized with regard to the conversion of contained functional groups, morphology and mechanical properties by bright-field, confocal laser scanning and reflection interference contrast microscopy, as well as force spectroscopy. Functional groups were introduced during SCP synthesis and by several post-synthesis procedures, based on photoradical grafting and thiol-Michael addition. Preparation of SCPs by thiol-Michael addition and subsequent coupling of maleimide derivatives to unreacted thiols proved to be the superior strategy, while other approaches were associated with changes in the properties of the SCP. The newly developed SCPs were tested for their sensing capabilities employing the biotin-streptavidin-system. Biotin detection in the range of 10-7 to 10-10 M verified the concept of the synthesis strategy and the advantage of using monodisperse SCPs for easier and faster sensing applications of the SCP assay.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Biotina , Coloides , Microfluídica/métodos , Polietilenoglicóis/química , Compostos de Sulfidrila
7.
Biomaterials ; 278: 121170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34628192

RESUMO

Macroporous cryogels have recently gained increasing interest for the controlled administration of signaling proteins in tissue engineering due to an advantageous combination of material properties. However, most of the previously reported cryogel systems did not allow for tunable, sustained protein release. We therefore designed a set of ready-to-use multi-armed polyethylene glycol (starPEG)-heparin cryogel systems containing different amounts of the protein-affine glycosaminoglycan component heparin to enable systematically tunable long-term delivery of different signaling proteins without affecting other cell-instructive properties. Experimental data and mathematical modeling indicate that the macroporous structure causes local differences in the concentration of proteins released into the pores and in the surrounding of the cryogels. As a proof-of-concept for their ready-to-use potential, cryogels pre-functionalized with signaling proteins and cell adhesion-peptides were demonstrated to induce the neuronal differentiation of colonizing pheochromocytoma cells. The elaborated approach opens up new perspectives for cryogels as easily storable and applicable systems for the precision delivery of signaling proteins.


Assuntos
Criogéis , Alicerces Teciduais , Polietilenoglicóis , Porosidade , Engenharia Tecidual
8.
Adv Mater ; 33(42): e2102489, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431569

RESUMO

Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Citocinas/química , Glicosaminoglicanos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Maleatos/química , Oligopeptídeos/química , Polietilenoglicóis/química , Polímeros/farmacologia , Estireno/química , Propriedades de Superfície
9.
Nat Commun ; 12(1): 2321, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875652

RESUMO

Bactericidal antibiotics kill bacteria by perturbing various cellular targets and processes. Disruption of the primary antibiotic-binding partner induces a cascade of molecular events, leading to overproduction of reactive metabolic by-products. It remains unclear, however, how these molecular events contribute to bacterial cell death. Here, we take a single-cell physical biology approach to probe antibiotic function. We show that aminoglycosides and fluoroquinolones induce cytoplasmic condensation through membrane damage and subsequent outflow of cytoplasmic contents as part of their lethality. A quantitative model of membrane damage and cytoplasmic leakage indicates that a small number of nanometer-scale membrane defects in a single bacterium can give rise to the cellular-scale phenotype of cytoplasmic condensation. Furthermore, cytoplasmic condensation is associated with the accumulation of reactive metabolic by-products and lipid peroxidation, and pretreatment of cells with the antioxidant glutathione attenuates cytoplasmic condensation and cell death. Our work expands our understanding of the downstream molecular events that are associated with antibiotic lethality, revealing cytoplasmic condensation as a phenotypic feature of antibiotic-induced bacterial cell death.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos
10.
Biomater Sci ; 8(1): 101-108, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674601

RESUMO

Multiphasic in vitro models with cross-scale heterogeneity in matrix properties and/or cellular composition can reflect the structural and compositional complexity of living tissues more faithfully, thereby creating new options for pathobiology and drug development studies. Herein, a new class of tunable microgel-in-gel materials is reported that build on a versatile platform of multifunctional poly(ethylene glycol)-heparin gel types and integrates monodisperse, cell-laden microgels within cell-laden bulk hydrogel matrices. A novel microfluidic approach was developed to enable the high-throughput fabrication of microgels of in situ adjustable diameters, stiffness, degradability and biomolecular functionalization. By choosing structure and composition of the microgel and the bulk gel compartments independently, our microgel-in-gel arrangements provide cross-scale control over tissue-mimetic features and pave the way for culture systems with designed mesoenvironmental characteristics. The potentialities of the introduced approach are exemplarily shown by creating a reductionistic in vitro model of vascularized prostate cancer tissue.


Assuntos
Microgéis/química , Neoplasias da Próstata/patologia , Engenharia Tecidual/métodos , Humanos , Hidrogéis , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos
11.
ACS Appl Mater Interfaces ; 11(45): 41862-41874, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31589405

RESUMO

Thermoresponsive interpenetrating networks (IPNs) were prepared by sequential synthesis of a biohybrid network of star-shaped poly(ethylene glycol) [starPEG] and heparin and a poly(N-isopropylacrylamide)-polymer network. Amide bond formation was used for cross-linking of the starPEG-heparin network and photo-cross-linking with N,N'-methylenebis(acrylamide) was applied for the formation of the second polymer network. Both networks were linked by chain entanglements and hydrogen bonds only. The obtained sequential IPNs (seq-IPNs) showed temperature-dependent network properties as reflected by swelling and elasticity data as well as by the release of glycosaminoglycan-binding growth factors. The elastic modulus of the seq-IPNs was found to be amplified up to 50-fold upon temperature change from 22 to 37 °C compared to the intrinsic elastic moduli of the two combined networks. The heparin concentration (as well as the complexation of growth factors with the hydrogel-contained heparin) was demonstrated to be variably independent from the mechanical properties (elastic moduli) of the hydrogels. Illustrating the usability of the developed seq-IPN platform for cell fate control, the thermo-modulation of the release of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) is shown as well as the osteogenic differentiation of human mesenchymal stem cells exposed to stiff and BMP-2 releasing seq-IPNs.

12.
J Tissue Eng Regen Med ; 13(9): 1672-1684, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250556

RESUMO

Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures. Hence, alternative growth factor-free differentiation approaches are designed and their efficacy to achieve different osteochondral cell types is investigated. Briefly, a dynamic niche is achieved by varying medium pH, oxygen tension (pO2 ) distribution in bioreactor, initiating chondrogenic differentiation with chondroitin sulphate A (CSA), and implementing systematic differentiation regimes. In this study, we demonstrated that CSA is a potent chondrogenic inducer, specifically in combination with acidic medium and low pO2 . Further, endochondral ossification is recapitulated through a systematic chondrogenic-osteogenic (ch-os) differentiation regime, and multiple osteochondral cell types are derived. Chondrogenic hypertrophy was also enhanced specifically in high pO2 regions. Consequently, mineralised constructs with higher structural integrity, volume, and tailored dimensions are achieved. In contrast, a continuous osteogenic differentiation regime (os-os) has derived compact and dense constructs, whereas a continuous chondrogenic differentiation regime (ch-ch) has attenuated construct mineralisation and impaired development. In conclusion, a growth factor-free differentiation approach is achieved through interplay of pO2 , medium pH, and systematic differentiation regimes. The controlled dynamic niches have recapitulated endochondral ossification and can potentially be exploited to derive larger bone constructs with near physiological properties.


Assuntos
Reatores Biológicos , Desenvolvimento Ósseo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Oxigênio/farmacologia , Animais , Agregação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Módulo de Elasticidade , Regulação da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Perfusão , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Alicerces Teciduais/química
13.
Biomaterials ; 198: 95-106, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29759731

RESUMO

Bone metastasis is a leading cause of death in patients with breast cancer, but the underlying mechanisms are poorly understood. While much work focuses on the molecular and cellular events that drive breast cancer bone metastasis, it is mostly unclear what role bone extracellular matrix (ECM) properties play in this process. Bone ECM primarily consists of mineralized collagen fibrils, which are composed of non-stoichiometric carbonated apatite (HA) and collagen type I. Reduced bone mineral content is epidemiologically linked with increased risk of bone metastasis. Yet elucidating the potential functional impact of collagen mineralization on breast cancer cells has remained challenging because of a lack of model systems that allow studying tumor cell behavior as a function of physiological, intrafibrillar collagen mineralization. Here, we have developed cell culture substrates composed of mineralized collagen type I fibrils using a polymer-induced liquid-precursor (PILP) process. Intrafibrillar HA decreased breast cancer cell adhesion forces and accordingly reduced collagen fiber alignment relative to cells cultured on control collagen. The resulting mineral-mediated changes in collagen network characteristics and mechanosignaling correlated with increased cell motility, but inhibited directed migration of breast cancer cells. These results suggest that physiological mineralization of collagen fibrils reduces tumor cell adhesion with potential functional consequences on skeletal homing of disseminated tumor cells in early stages of breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Colágeno Tipo I/química , Animais , Apatitas/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Neoplasias Ósseas/química , Neoplasias Ósseas/secundário , Neoplasias da Mama/química , Calcificação Fisiológica , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Módulo de Elasticidade , Feminino , Humanos , Ratos
14.
Colloids Surf B Biointerfaces ; 174: 451-458, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497006

RESUMO

The proteinaceous pellicle layer, which develops upon contact with saliva on the surface of teeth, is important for the formation of oral biofilms and for the protection of teeth from abrasion and chemically induced erosion. Astringent food ingredients comprising polyphenols, cationic macromolecules, and multivalent metal salts are known to interact with the pellicle. However, astringent-induced changes in the physicochemical properties of the tooth-saliva interphase are not yet completely understood. Here we provide comprehensive insights into interfacial charging, ultrastructure, thickness, and surface roughness of the pellicles formed on the model substrates silicon oxide (SiO2), Teflon® AF, and hydroxyapatite, as well as on bovine enamel before and after incubation with the astringents epigallocatechin gallate, tannic acid, iron(III) salt, lysozyme, and chitosan. Quartz crystal microbalance with dissipation monitoring demonstrated viscous behavior of untreated pellicles formed in vitro on the different materials. Electrokinetic (streaming current) measurements revealed that cationic astringents reverse the charge of native pellicles, whereas polyphenols did not change the charge under physiological pH condition. In addition, transmission electron microscopy and atomic force microscopy showed a concentration-dependent increase in average film thickness and pellicle surface roughness as induced by astringents. These multifaceted alterations of the salivary pellicle may come along with an increase in roughness perceived on the teeth, which is part of the complex sensations of oral astringency.


Assuntos
Adstringentes/administração & dosagem , Esmalte Dentário/química , Película Dentária/química , Saliva/química , Proteínas e Peptídeos Salivares/metabolismo , Dente/química , Administração Oral , Adulto , Animais , Adstringentes/farmacologia , Bovinos , Quitosana/química , Esmalte Dentário/efeitos dos fármacos , Película Dentária/efeitos dos fármacos , Compostos Férricos/química , Humanos , Muramidase/química , Saliva/efeitos dos fármacos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Dióxido de Silício/química , Propriedades de Superfície , Dente/efeitos dos fármacos , Dente/metabolismo
15.
Dev Cell ; 46(1): 85-101.e8, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29974866

RESUMO

Neural stem cells (NSCs) constitute an endogenous reservoir for neurons that could potentially be harnessed for regenerative therapies in disease contexts such as neurodegeneration. However, in Alzheimer's disease (AD), NSCs lose plasticity and thus possible regenerative capacity. We investigate how NSCs lose their plasticity in AD by using starPEG-heparin-based hydrogels to establish a reductionist 3D cell-instructive neuro-microenvironment that promotes the proliferative and neurogenic ability of primary and induced human NSCs. We find that administration of AD-associated Amyloid-ß42 causes classical neuropathology and hampers NSC plasticity by inducing kynurenic acid (KYNA) production. Interleukin-4 restores NSC proliferative and neurogenic ability by suppressing the KYNA-producing enzyme Kynurenine aminotransferase (KAT2), which is upregulated in APP/PS1dE9 mouse model of AD and in postmortem human AD brains. Thus, our culture system enables a reductionist investigation of regulation of human NSC plasticity for the identification of potential therapeutic targets for intervention in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Plasticidade Celular/fisiologia , Interleucina-4/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Adulto , Idoso de 80 Anos ou mais , Doença de Alzheimer , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Ácido Cinurênico/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Transaminases/metabolismo , Ativação Transcricional/genética , Adulto Jovem
16.
ACS Appl Mater Interfaces ; 10(17): 14264-14270, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29658265

RESUMO

We investigated the utility of a heparin/peptide-polyethylene glycol conjugate system to build layer-by-layer (LbL) structures, to assemble tailored multilayer-biomatrices for cell culture. The LbL assembly balances the advantages of polyelectrolyte systems and protein-based systems. Human umbilical vein endothelial cells showed distinct responses to the film thickness and structure; the presence, density, and spatial arrangement of a cell adhesion ligand within the nanothin film; and the pretreatment of the film with morphogens. The LbL technique presents a versatile tool for modifying cell culture substrates with defined and diverse biochemical and structural features, for investigating cell-material interactions.


Assuntos
Heparina/química , Adesão Celular , Humanos , Peptídeos , Polietilenoglicóis , Proteínas
17.
Sci Rep ; 7(1): 12084, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935977

RESUMO

The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células Cultivadas , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transplante Heterólogo , Ácido Valproico/farmacologia , Peixe-Zebra
18.
Acta Biomater ; 55: 109-119, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28433789

RESUMO

Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials characteristics only. In this work, we demonstrate how macromolecular crowding (MMC) - the supplementation of matrix reconstitution media with synthetic or natural macromolecules in ways to create excluded volume effects (EVE) - can be employed for tailoring important structural and biophysical characteristics of kidney-derived fibrillated matrices. Porcine kidneys were decellularized, ground and the obtained extracellular matrix (ECM) preparations were reconstituted under varied MMC conditions. We show that MMC strongly influences the fibrillogenesis kinetics and impacts the architecture and the elastic modulus of the reconstituted matrices, with diameters and relative alignment of fibrils increasing at elevated concentrations of the crowding agent Ficoll400, a nonionic synthetic polymer of sucrose. Furthermore, we demonstrate how MMC modulates the distribution of key ECM molecules within the reconstituted matrix scaffolds. As a proof of concept, we compared different variants of kidney-derived fibrillated matrices in cell culture experiments referring to specific requirements of kidney tissue engineering approaches. The results revealed that MMC-tailored matrices support the morphogenesis of human umbilical vein endothelial cells (HUVECs) into capillary networks and of murine kidney stem cells (KSCs) into highly branched aggregates. The established methodology is concluded to provide generally applicable new options for tailoring tissue-specific multiphasic matrices in vitro. STATEMENT OF SIGNIFICANCE: Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials characteristics only. Using the kidney matrix as a model, we herein report a new approach for tailoring tissue-derived fibrillated matrices by means of macromolecular crowding (MMC), the supplementation of reconstitution media with synthetic or natural macromolecules. MMC-modulation of matrix reconstitution is demonstrated to allow for the adjustment of fibrillation kinetics and nano-architecture, fiber diameter, alignment, and matrix elasticity. Primary human umbilical vein endothelial cells (HUVEC) and murine kidney stem cells (KSC) were cultured within different variants of fibrillated kidney matrix scaffolds. The results showed that MMC-tailored matrices were superior in supporting desired morphogenesis phenomena of both cell types.


Assuntos
Matriz Extracelular/química , Ficoll/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Rim/química , Células-Tronco/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Células-Tronco/citologia , Suínos
19.
Acta Biomater ; 53: 70-80, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216298

RESUMO

Polymer hydrogels can be readily modulated with regard to their physical properties and functionalized to recapitulate molecular cues of the extracellular matrix (ECM). However, they remain structurally different from the hierarchical supramolecular assemblies of natural ECM. Accordingly, we herein report a set of hydrogel composite materials made from starPEG-peptide conjugates, maleimide-functionalized heparin and collagen type I that combine semisynthetic and ECM-derived components. Collagen fibrillogenesis was controlled by temperature and collagen concentration to form collagen microstructures which were then homogeneously distributed within the 3D composite matrix during hydrogel formation. The collagen-laden hydrogel materials showed a heterogeneous local variation of the stiffness and adhesion ligand density. Composite gels functionalized with growth factors and cell adhesive peptides (RGDSP) supported the growth of embedded human umbilical cord vein endothelial cells (HUVECs) and induced the alignment of embedded bone marrow-derived human mesenchymal stem cells (MSCs) to the collagen microstructures in vitro. The introduced composite hydrogel material is concluded to faithfully mimic cell-instructive features of the ECM. STATEMENT OF SIGNIFICANCE: Cell-instructive materials play an important role in the generation of both regenerative therapies and advanced tissue and disease models. For that purpose, biofunctional polymer hydrogels recapitulating molecular cues of the extracellular matrix (ECM) were successfully applied in various different studies. However, hydrogels generally lack the hierarchical supramolecular structure of natural ECM. We have therefore developed a hydrogel composite material made from starPEG-peptide conjugates, maleimide-functionalized heparin and collagen type I fibrils. The collagen-laden scaffolds showed a heterogeneous local variation in the stiffness of the material. The composite gels were successfully tested in culture experiments with human umbilical cord vein endothelial cells and bone marrow-derived human mesenchymal stem cells. It was concluded that the composite scaffold was able to faithfully mimic important cell-instructive features of the ECM.


Assuntos
Materiais Biocompatíveis/química , Colágeno Tipo I/química , Heparina/química , Polietilenoglicóis/química , Diferenciação Celular , Sobrevivência Celular , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/citologia
20.
Eng Life Sci ; 17(8): 833-840, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32624830

RESUMO

We present a novel protocol that uses single-cell force spectroscopy to characterize the bacteria-to-surface interactions involved in early steps of biofilm formation. Bacteria are immobilized as a monolayer by electrostatic interactions on a polyethylenimine-coated silica bead, and the Escherichia coli-bead complex is then glued on a tipless cantilever. We validated our new protocol by comparing to earlier published methods using single bacteria, but in contrast to these, which carry out bacterial attachment to the bead after fixation to the cantilever, our protocol results in more reliable production of usable cell probes. Measurements of interactions of E. coli with bio-inspired surfaces by single-cell force spectroscopy yielded comparable detachment forces to those found with the previous methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...