Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Transplantation ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995954

RESUMO

BACKGROUND: The clinical standard for pancreas preservation for transplantation is static cold storage (SCS). Oxygenation during preservation has been shown to be advantageous in clinical studies. This study evaluates the efficiency of different oxygenation modalities during hypothermic pancreas preservation. METHODS: Thirty-two porcine pancreases were procured in a controlled donation after circulatory death model and were divided to be preserved in 8 groups: (1) SCS, (2) hypothermic machine perfusion (HMP), (3) hypothermic oxygenated machine perfusion (HOPE) with 21% oxygen, (4) HOPE and 100%, (5) SCS and oxygen carrier, M101, (6) HMP and M101, (7) HOPE 21% and M101, and (8) HOPE 100% and M101. All the groups underwent 24 h of hypothermic preservation, followed by 2 h of normothermic reperfusion. Oxygen partial pressures were assessed using parenchymal probes. Perfusion parameters, perfusate samples, and tissue biopsies were analyzed. RESULTS: This study showed that HMP was linked to higher tissue oxygen partial pressures, lower succinate levels, and better reperfusion parameters. Furthermore, the addition of M101 to either SCS or HMP was associated with lower succinate and creatinine phosphokinase accumulation, suggesting a protective effect against ischemia. CONCLUSIONS: Our research has demonstrated the efficacy of machine perfusion in hypothermic conditions in providing oxygen to the pancreas during preservation and conditioning the pancreatic microvasculature for reperfusion during transplantation. Furthermore, the addition of M101 suggests a protective effect on the graft from ischemia.

2.
Trials ; 25(1): 386, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886851

RESUMO

BACKGROUND: Liver disease is the third leading cause of premature death in the UK. Transplantation is the only successful treatment for end-stage liver disease but is limited by a shortage of suitable donor organs. As a result, up to 20% of patients on liver transplant waiting lists die before receiving a transplant. A third of donated livers are not suitable for transplant, often due to steatosis. Hepatic steatosis, which affects 33% of the UK population, is strongly associated with obesity, an increasing problem in the potential donor pool. We have recently tested defatting interventions during normothermic machine perfusion (NMP) in discarded steatotic human livers that were not transplanted. A combination of therapies including forskolin (NKH477) and L-carnitine to defat liver cells and lipoprotein apheresis filtration were investigated. These interventions resulted in functional improvement during perfusion and reduced the intrahepatocellular triglyceride (IHTG) content. We hypothesise that defatting during NMP will allow more steatotic livers to be transplanted with improved outcomes. METHODS: In the proposed multi-centre clinical trial, we will randomly assign 60 livers from donors with a high-risk of hepatic steatosis to either NMP alone or NMP with defatting interventions. We aim to test the safety and feasibility of the defatting intervention and will explore efficacy by comparing ex-situ and post-reperfusion liver function between the groups. The primary endpoint will be the proportion of livers that achieve predefined functional criteria during perfusion which indicate potential suitability for transplantation. These criteria reflect hepatic metabolism and injury and include lactate clearance, perfusate pH, glucose metabolism, bile composition, vascular flows and transaminase levels. Clinical secondary endpoints will include proportion of livers transplanted in the two arms, graft function; cell-free DNA (cfDNA) at follow-up visits; patient and graft survival; hospital and ITU stay; evidence of ischemia-reperfusion injury (IRI); non-anastomotic biliary strictures and recurrence of steatosis (determined on MRI at 6 months). DISCUSSION: This study explores ex-situ pharmacological optimisation of steatotic donor livers during NMP. If the intervention proves effective, it will allow the safe transplantation of livers that are currently very likely to be discarded, thereby reducing waiting list deaths. TRIAL REGISTRATION: ISRCTN ISRCTN14957538. Registered in October 2022.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Perfusão , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Transplante de Fígado/métodos , Perfusão/métodos , Fígado Gorduroso/terapia , Doadores de Tecidos/provisão & distribuição , Fígado/patologia , Estudos Multicêntricos como Assunto , Preservação de Órgãos/métodos , Fatores de Tempo , Resultado do Tratamento
3.
Transplantation ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845088

RESUMO

BACKGROUND: The TWO Study (Transplantation Without Overimmunosuppression) aimed to investigate a novel approach to regulatory T-cell (Treg) therapy in renal transplant patients, using a delayed infusion protocol at 6 mo posttransplant to promote a Treg-skewed lymphocyte repopulation after alemtuzumab induction. We hypothesized that this would allow safe weaning of immunosuppression to tacrolimus alone. The COVID-19 pandemic led to the suspension of alemtuzumab use, and therefore, we report the unique cohort of 7 patients who underwent the original randomized controlled trial protocol. This study presents a unique insight into Treg therapy combined with alemtuzumab and is therefore an important proof of concept for studies in other diseases that are considering lymphodepletion. METHODS: Living donor kidney transplant recipients were randomized to receive autologous polyclonal Treg at week 26 posttransplantation, coupled with weaning doses of tacrolimus, (Treg therapy arm) or standard immunosuppression alone (tacrolimus and mycophenolate mofetil). Primary outcomes were patient survival and rejection-free survival. RESULTS: Successful cell manufacturing and cryopreservation until the 6-mo infusion were achieved. Patient and transplant survival was 100%. Acute rejection-free survival was 100% in the Treg-treated group at 18 mo after transplantation. Although alemtuzumab caused a profound depletion of all lymphocytes, including Treg, after cell therapy infusion, there was a transient increase in peripheral Treg numbers. CONCLUSIONS: The study establishes that delayed autologous Treg therapy is both feasible and safe, even 12 mo after cell production. The findings present a new treatment protocol for Treg therapy, potentially expanding its applications to other indications.

5.
Blood ; 143(8): 721-733, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048591

RESUMO

ABSTRACT: The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling. Although the oxygen-carrying capacity of blood is increased with transfusion, studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues by causing transport to become diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys, normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, renal respiration correlated inversely with the time-constant of oxygen unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. To test for a rescue effect, perfusion of kidneys deemed unsuitable for transplantation was alternated between stored and rejuvenated RBCs of the same donation. This experiment controlled oxygen-unloading, without intervening ischemia, holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics improved the kidney's oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios, such as ex vivo organ perfusion, major hemorrhage, and pediatric transfusion. This trial was registered at www.clinicaltrials.gov as #ISRCTN13292277.


Assuntos
Eritrócitos , Oxigênio , Humanos , Criança , Rim
6.
Liver Transpl ; 30(1): 30-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109282

RESUMO

Normothermic machine perfusion (NMP) enables pretransplant assessment of high-risk donor livers. The VITTAL trial demonstrated that 71% of the currently discarded organs could be transplanted with 100% 90-day patient and graft survivals. Here, we report secondary end points and 5-year outcomes of this prospective, open-label, phase 2 adaptive single-arm study. The patient and graft survivals at 60 months were 82% and 72%, respectively. Four patients lost their graft due to nonanastomotic biliary strictures, one caused by hepatic artery thrombosis in a liver donated following brain death, and 3 in elderly livers donated after circulatory death (DCD), which all clinically manifested within 6 months after transplantation. There were no late graft losses for other reasons. All the 4 patients who died during the study follow-up had functioning grafts. Nonanastomotic biliary strictures developed in donated after circulatory death livers that failed to produce bile with pH >7.65 and bicarbonate levels >25 mmol/L. Histological assessment in these livers revealed high bile duct injury scores characterized by arterial medial necrosis. The quality of life at 6 months significantly improved in all but 4 patients suffering from nonanastomotic biliary strictures. This first report of long-term outcomes of high-risk livers assessed by normothermic machine perfusion demonstrated excellent 5-year survival without adverse effects in all organs functioning beyond 1 year (ClinicalTrials.gov number NCT02740608).


Assuntos
Transplante de Fígado , Idoso , Humanos , Constrição Patológica/etiologia , Fígado/cirurgia , Transplante de Fígado/efeitos adversos , Preservação de Órgãos , Perfusão , Estudos Prospectivos , Qualidade de Vida
7.
Clin Transplant ; 37(12): e15145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776267
8.
Transpl Int ; 36: 11645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727383

RESUMO

Static Cold Storage (SCS) injures the bile duct, while the effect of Normothermic Machine Perfusion (NMP) is unknown. In a sub-study of the COPE trial on liver NMP, we investigated the impact of preservation type on histological bile duct injury score (BDIS). Transplants with at least one bile duct biopsy, either at end of preservation or 1 h post-reperfusion, were considered. BDIS was determined by assessing peribiliary glands injury, stromal and mural loss, haemorrhage, and thrombosis. A bivariate linear model compared BDIS (estimate, CI) between groups. Sixty-five transplants and 85 biopsies were analysed. Twenty-three grafts were preserved with SCS and 42 with NMP, with comparable baseline characteristics except for a shorter cold ischemic time in NMP. The BDIS increased over time regardless of preservation type (p = 0.04). The BDIS estimate was higher in NMP [8.02 (7.40-8.65)] than in SCS [5.39 (4.52-6.26), p < 0.0001] regardless of time. One patient in each group developed ischemic cholangiopathy, with a BDIS of 6 for the NMP-preserved liver. In six other NMP grafts, BDIS ranged 7-12 without development of ischemic cholangiopathy. In conclusion, BDIS increases over time, and the higher BDIS in NMP did not increase ischemic cholangiopathy. Thus, BDIS may overestimate this risk after liver NMP.


Assuntos
Ductos Biliares , Fígado , Humanos , Perfusão , Reperfusão , Biópsia
9.
Ann Surg ; 278(5): e912-e921, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389552

RESUMO

OBJECTIVE: To compare conventional low-temperature storage of transplant donor livers [static cold storage (SCS)] with storage of the organs at physiological body temperature [normothermic machine perfusion (NMP)]. BACKGROUND: The high success rate of liver transplantation is constrained by the shortage of transplantable organs (eg, waiting list mortality >20% in many centers). NMP maintains the liver in a functioning state to improve preservation quality and enable testing of the organ before transplantation. This is of greatest potential value with organs from brain-dead donor organs (DBD) with risk factors (age and comorbidities), and those from donors declared dead by cardiovascular criteria (donation after circulatory death). METHODS: Three hundred eighty-three donor organs were randomized by 15 US liver transplant centers to undergo NMP (n = 192) or SCS (n = 191). Two hundred sixty-six donor livers proceeded to transplantation (NMP: n = 136; SCS: n = 130). The primary endpoint of the study was "early allograft dysfunction" (EAD), a marker of early posttransplant liver injury and function. RESULTS: The difference in the incidence of EAD did not achieve significance, with 20.6% (NMP) versus 23.7% (SCS). Using exploratory, "as-treated" rather than "intent-to-treat," subgroup analyses, there was a greater effect size in donation after circulatory death donor livers (22.8% NMP vs 44.6% SCS) and in organs in the highest risk quartile by donor risk (19.2% NMP vs 33.3% SCS). The incidence of acute cardiovascular decompensation at organ reperfusion, "postreperfusion syndrome," as a secondary outcome was reduced in the NMP arm (5.9% vs 14.6%). CONCLUSIONS: NMP did not lower EAD, perhaps related to the inclusion of lower-risk liver donors, as higher-risk donor livers seemed to benefit more. The technology is safe in standard organ recovery and seems to have the greatest benefit for marginal donors.

10.
J Hepatol ; 78(6): 1181-1198, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208105

RESUMO

With the increasing number of accepted candidates on waiting lists worldwide, there is an urgent need to expand the number and the quality of donor livers. Dynamic preservation approaches have demonstrated various benefits, including improving liver function and graft survival, and reducing liver injury and post-transplant complications. Consequently, organ perfusion techniques are being used in clinical practice in many countries. Despite this success, a proportion of livers do not meet current viability tests required for transplantation, even with the use of modern perfusion techniques. Therefore, devices are needed to further optimise machine liver perfusion - one promising option is to prolong machine liver perfusion for several days, with ex situ treatment of perfused livers. For example, stem cells, senolytics, or molecules targeting mitochondria or downstream signalling can be administered during long-term liver perfusion to modulate repair mechanisms and regeneration. Besides, today's perfusion equipment is also designed to enable the use of various liver bioengineering techniques, to develop scaffolds or for their re-cellularisation. Cells or entire livers can also undergo gene modulation to modify animal livers for xenotransplantation, to directly treat injured organs or to repopulate such scaffolds with "repaired" autologous cells. This review first discusses current strategies to improve the quality of donor livers, and secondly reports on bioengineering techniques to design optimised organs during machine perfusion. Current practice, as well as the benefits and challenges associated with these different perfusion strategies are discussed.


Assuntos
Transplante de Fígado , Animais , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Fígado , Perfusão/métodos , Bioengenharia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA