Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367669

RESUMO

Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Proteínas de Saccharomyces cerevisiae , Proteína da Síndrome de Wiskott-Aldrich , Animais , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Sítios de Ligação , Mamíferos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
2.
PLoS Genet ; 19(10): e1010984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782660

RESUMO

During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.


Assuntos
Actomiosina , Proteínas de Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Corpos Polares , Citocinese/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Meiose/genética , Oócitos/metabolismo , Paclitaxel , Proteínas Associadas aos Microtúbulos/genética
3.
Methods Mol Biol ; 2677: 203-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464244

RESUMO

Recent advances in tissue clearing methodologies have enabled three-dimensional (3D) visualization of the ovary and, consequently, in-depth exploration of the dynamic changes occurring at the single-cell level. Here we describe methods for whole-mount immunofluorescence, clearing, imaging, and analysis of whole ovarian tissue in 3D throughout murine development and aging.


Assuntos
Imageamento Tridimensional , Ovário , Feminino , Camundongos , Animais , Imageamento Tridimensional/métodos , Imunofluorescência , Envelhecimento
4.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292632

RESUMO

During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.

5.
J Immunol ; 207(7): 1763-1775, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470859

RESUMO

Regulatory T cells (Tregs) reside in nonlymphoid tissues where they carry out unique functions. The molecular mechanisms responsible for Treg accumulation and maintenance in these tissues are relatively unknown. Using an unbiased discovery approach, we identified LAYN (layilin), a C-type lectin-like receptor, to be preferentially and highly expressed on a subset of activated Tregs in healthy and diseased human skin. Expression of layilin on Tregs was induced by TCR-mediated activation in the presence of IL-2 or TGF-ß. Mice with a conditional deletion of layilin in Tregs had reduced accumulation of these cells in tumors. However, these animals somewhat paradoxically had enhanced immune regulation in the tumor microenvironment, resulting in increased tumor growth. Mechanistically, layilin expression on Tregs had a minimal effect on their activation and suppressive capacity in vitro. However, expression of this molecule resulted in a cumulative anchoring effect on Treg dynamic motility in vivo. Taken together, our results suggest a model whereby layilin facilitates Treg adhesion in skin and, in doing so, limits their suppressive capacity. These findings uncover a unique mechanism whereby reduced Treg motility acts to limit immune regulation in nonlymphoid organs and may help guide strategies to exploit this phenomenon for therapeutic benefit.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Pele/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteínas de Transporte/genética , Movimento Celular , Células Cultivadas , Humanos , Tolerância Imunológica , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Especificidade de Órgãos , Receptores de Retorno de Linfócitos/genética , Fator de Crescimento Transformador beta/metabolismo
6.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34292884

RESUMO

Intratumoral T cells that might otherwise control tumors are often identified in an "exhausted" state, defined by specific epigenetic modifications and upregulation of genes such as CD38, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed cell death 1 (PD1). Although the term might imply inactivity, there has been little study of this state at the phenotypic level in tumors to understand the extent of their incapacitation. Starting with the observation that T cells move more quickly through mouse tumors the longer they reside there and progress toward exhaustion, we developed a nonstimulatory, live-biopsy method for the real-time study of T cell behavior within individual patient tumors. Using 2-photon microscopy, we studied native CD8+ T cell interaction with antigen-presenting cells (APCs) and cancer cells in different microniches of human tumors and found that T cell speed was variable by region and by patient and was inversely correlated with local tumor density. Across a range of tumor types, we found a strong relationship between CD8+ T cell motility and the exhausted T cell state that corresponded with our observations made in mouse models in which exhausted T cells moved faster. Our study demonstrates T cell dynamic states in individual human tumors and supports the existence of an active program in "exhausted" T cells that extends beyond incapacitating them.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Movimento Celular/imunologia , Feminino , Humanos , Tolerância Imunológica , Linfócitos do Interstício Tumoral/patologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Neoplasias/patologia
7.
Nat Commun ; 12(1): 1916, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772022

RESUMO

Multiphoton microscopy is a powerful technique for deep in vivo imaging in scattering samples. However, it requires precise, sample-dependent increases in excitation power with depth in order to generate contrast in scattering tissue, while minimizing photobleaching and phototoxicity. We show here how adaptive imaging can optimize illumination power at each point in a 3D volume as a function of the sample's shape, without the need for specialized fluorescent labeling. Our method relies on training a physics-based machine learning model using cells with identical fluorescent labels imaged in situ. We use this technique for in vivo imaging of immune responses in mouse lymph nodes following vaccination. We achieve visualization of physiologically realistic numbers of antigen-specific T cells (~2 orders of magnitude lower than previous studies), and demonstrate changes in the global organization and motility of dendritic cell networks during the early stages of the immune response. We provide a step-by-step tutorial for implementing this technique using exclusively open-source hardware and software.


Assuntos
Imunidade/imunologia , Linfonodos/imunologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Vacinação/métodos , Imunidade Adaptativa/imunologia , Algoritmos , Animais , Antígenos/imunologia , Feminino , Linfonodos/metabolismo , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Nature ; 559(7715): 627-631, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022164

RESUMO

The thymus is responsible for generating a diverse yet self-tolerant pool of T cells1. Although the thymic medulla consists mostly of developing and mature AIRE+ epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought2. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers3. Similar to the periphery, thymic tuft cells express the canonical taste transduction pathway and IL-25. However, they are unique in their spatial association with cornified aggregates, ability to present antigens and expression of a broad diversity of taste receptors. Some thymic tuft cells pass through an Aire-expressing stage and depend on a known AIRE-binding partner, HIPK2, for their development. Notably, the taste chemosensory protein TRPM5 is required for their thymic function through which they support the development and polarization of thymic invariant natural killer T cells and act to establish a medullary microenvironment that is enriched in the type 2 cytokine, IL-4. These findings indicate that there is a compartmentalized medullary environment in which differentiation of a minor and highly specialized epithelial subset has a non-redundant role in shaping thymic function.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Interleucina-4/metabolismo , Timócitos/citologia , Timo/citologia , Timo/metabolismo , Animais , Microambiente Celular , Quinases Semelhantes a Duplacortina , Feminino , Humanos , Tolerância Imunológica/imunologia , Interleucina-4/biossíntese , Interleucinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Timócitos/metabolismo , Timo/anatomia & histologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína AIRE
9.
Development ; 143(24): 4749-4754, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836961

RESUMO

Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo.


Assuntos
Blastocisto/ultraestrutura , Implantação do Embrião/fisiologia , Embrião de Mamíferos/ultraestrutura , Endométrio/ultraestrutura , Útero/ultraestrutura , Animais , Embrião de Mamíferos/diagnóstico por imagem , Endométrio/diagnóstico por imagem , Endométrio/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Útero/diagnóstico por imagem , Útero/fisiologia , Proteína Wnt-5a/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...