Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803013

RESUMO

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

3.
iScience ; 25(3): 103931, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35265810

RESUMO

Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist.

4.
Front Microbiol ; 13: 1106401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726564

RESUMO

Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.

5.
EMBO Mol Med ; 13(6): e14035, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998144

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Humanos , Gravidez , Proteínas Virais de Fusão/genética
6.
Front Microbiol ; 12: 630121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889136

RESUMO

Human cytomegalovirus (HCMV) relies in large part upon the viral membrane fusion glycoprotein B and two alternative gH/gL complexes, gH/gL/gO (Trimer) and gH/gL/UL128/UL130/UL131A (Pentamer) to enter into cells. The relative amounts of Trimer and Pentamer vary among HCMV strains and contribute to differences in cell tropism. Although the viral ER resident protein UL148 has been shown to interact with gH to facilitate gO incorporation, the mechanisms that favor the assembly and maturation of one complex over another remain poorly understood. HCMV virions also contain an alternative non-disulfide bound heterodimer comprised of gH and UL116 whose function remains unknown. Here, we show that disruption of HCMV gene UL116 causes infectivity defects of ∼10-fold relative to wild-type virus and leads to reduced expression of both gH/gL complexes in virions. Furthermore, gH that is not covalently bound to other viral glycoproteins, which are readily detected in wild-type HCMV virions, become undetectable in the absence of UL116 suggesting that the gH/UL116 complex is abundant in virions. We find evidence that UL116 and UL148 interact during infection indicating that the two proteins might cooperate to regulate the abundance of HCMV gH complexes. Altogether, these results are consistent with a role of UL116 as a chaperone for gH during the assembly and maturation of gH complexes in infected cells.

7.
Cell Microbiol ; 22(5): e13166, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31957253

RESUMO

Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F-actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen-presenting cells (APC) is subsequently impaired resulting in decreased cell-cell contacts (or conjugates) between the two cell types, as compared with non-infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.


Assuntos
Citoesqueleto de Actina/metabolismo , Imunidade Adaptativa , Disenteria Bacilar/imunologia , Transporte Proteico/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Shigella/metabolismo , Actinas , Linhagem Celular , Complexo de Golgi , Humanos , Sinapses Imunológicas , Shigella/genética , Linfócitos T/imunologia , Sistemas de Secreção Tipo III/metabolismo
8.
Vaccine ; 37(30): 4204-4213, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227353

RESUMO

Self-amplifying mRNAs (SAM)-based vaccines have been shown to induce a robust immune response in various animal species against both viral and bacterial pathogens. Due to their synthetic nature and to the versatility of the manufacturing process, SAM technology may represent an attractive solution for rapidly producing novel vaccines, which is particularly critical in case of pandemic infections or diseases mediated by newly emerging pathogens. Recent published data support the hypothesis that Antigen Presenting Cells (APCs) are responsible for CD8+ T-cell priming after SAM vaccination, suggesting cross-priming as the key mechanism for antigen presentation by SAM vaccines. In our study we investigated the possibility to enhance the immune response induced in mice by a single immunization with SAM by increasing the recruitment of APCs at the site of injection. To enhance SAM immunogenicity, we selected murine granulocyte-macrophage colony-stimulating factor (GM-CSF) as a model chemoattractant for APCs, and developed a SAM-GM-CSF vector. We evaluated whether the use of SAM-GM-CSF in combination with a SAM construct encoding the Influenza A virus nucleoprotein (NP) would lead to an increase of APC recruitment and NP-specific immune response. We indeed observed that the administration of SAM-GM-CSF enhances the recruitment of APCs at the injection site. Consistently with our hypothesis, co-administration of SAM-GM-CSF with SAM-NP significantly improved the magnitude of NP-specific CD8+ T-cell response both in terms of frequency of cytotoxic antigen-specific CD8+ T-cells and their functional activity in vivo. Furthermore, co-immunization with SAM-GM-CSF and SAM-NP provided an increase in protection against a lethal challenge with influenza virus. In conclusion, we demonstrated that increased recruitment of APCs at the site of injection is associated with an enhanced effectiveness of SAM vaccination and might be a powerful tool to potentiate the efficacy of RNA vaccination.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , RNA Mensageiro/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 9(1): 528, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410413

RESUMO

Data obtained recently in the United Kingdom following a nationwide infant immunization program against serogroup B Neisseria meningitidis (MenB) reported >80% 4CMenB vaccine-mediated protection. Factor H-binding protein (fHbp) is a meningococcal virulence factor and a component of two new MenB vaccines. Here, we investigated the structural bases underlying the fHbp-dependent protective antibody response in humans, which might inform future antigen design efforts. We present the co-crystal structure of a human antibody Fab targeting fHbp. The vaccine-elicited Fab 1A12 is cross-reactive and targets an epitope highly conserved across the repertoire of three naturally occurring fHbp variants. The free Fab structure highlights conformational rearrangements occurring upon antigen binding. Importantly, 1A12 is bactericidal against MenB strains expressing fHbp from all three variants. Our results reveal important immunological features potentially contributing to the broad protection conferred by fHbp vaccination. Our studies fuel the rationale of presenting conserved protein epitopes when developing broadly protective vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Sequência Conservada , Epitopos/imunologia , Vacinas Meningocócicas/química , Adulto , Sequência de Aminoácidos , Afinidade de Anticorpos , Reações Cruzadas , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/química , Humanos , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Conformação Proteica
10.
J Infect ; 76(5): 449-456, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374589

RESUMO

OBJECTIVES: The main aim of this exploratory study was to evaluate functional activity of antibodies elicited by a maternal Group B Streptococcus (GBS) investigational vaccine composed of capsular polysaccharides Ia, Ib, and III conjugated to genetically detoxified Diphtheria toxin CRM197. The second objective was to investigate the relationship between serotype-specific IgG concentrations and functional activity in maternal and cord sera. METHODS: Maternal and cord sera collected at baseline and at delivery from vaccine and placebo recipients during a double-blind placebo-controlled Phase II study (www.clinicaltrials.gov, NCT01446289) were tested in an opsono-phagocytic bacterial killing assay. Cord sera from vaccine recipients were also passively transferred to newborn mice to investigate conferred protection against bacterial challenge. RESULTS: Antibody-mediated GBS phagocytic killing was significantly increased in maternal serum at delivery and in cord sera from the investigational vaccine group as compared to the placebo group. Anti-capsular IgG concentrations above 1 µg/mL mediated in vitro killing against GBS strains belonging to all three serotypes and IgG levels correlated with functional titers. Passively administered cord sera elicited a dose-dependent protective response against all GBS serotypes in the in vivo model. CONCLUSIONS: The maternal vaccine elicited functional antibodies that were placentally transferred. Anti-capsular IgG concentrations in maternal and cord sera were predictive of functional activity and in vivo protection in the mouse model.


Assuntos
Anticorpos Antibacterianos/sangue , Sangue Fetal/imunologia , Glicoconjugados/imunologia , Imunização Passiva , Vacinas Estreptocócicas/imunologia , Adolescente , Adulto , Animais , Animais Recém-Nascidos , Método Duplo-Cego , Feminino , Humanos , Imunidade Materno-Adquirida , Imunoglobulina G/análise , Imunoglobulina G/sangue , Camundongos , Gravidez , Sorogrupo , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus agalactiae , Vacinas Conjugadas/administração & dosagem , Adulto Jovem
11.
Vaccine ; 35(2): 361-368, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939014

RESUMO

Nucleic acid vaccines represent an attractive approach to vaccination, combining the positive attributes of both viral vectors and live-attenuated vaccines, without the inherent limitations of each technology. We have developed a novel technology, the Self-Amplifying mRNA (SAM) platform, which is based on the synthesis of self-amplifying mRNA formulated and delivered as a vaccine. SAM vaccines have been shown to stimulate robust innate and adaptive immune responses in small animals and non-human primates against a variety of viral antigens, thus representing a safe and versatile tool against viral infections. To assess whether the SAM technology could be used for a broader range of targets, we investigated the immunogenicity and efficacy of SAM vaccines expressing antigens from Group A (GAS) and Group B (GBS) Streptococci, as models of bacterial pathogens. Two prototype bacterial antigens (the double-mutated GAS Streptolysin-O (SLOdm) and the GBS pilus 2a backbone protein (BP-2a)) were successfully expressed by SAM vectors. Mice immunized with both vaccines produced significant amounts of fully functional serum antibodies. The antibody responses generated by SAM vaccines were capable of conferring consistent protection in murine models of GAS and GBS infections. Inclusion of a eukaryotic secretion signal or boosting with the recombinant protein resulted in higher specific-antibody levels and protection. Our results support the concept of using SAM vaccines as potential solution for a wide range of both viral and bacterial pathogens, due to the versatility of the manufacturing processes and the broad spectrum of elicited protective immune response.


Assuntos
Antígenos de Bactérias/imunologia , RNA Mensageiro/biossíntese , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Streptococcus pyogenes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Modelos Animais de Doenças , Feminino , Camundongos , RNA Mensageiro/genética , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/genética , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-24009891

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. METHODS: Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. RESULTS: CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. CONCLUSIONS: When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.

13.
Proc Natl Acad Sci U S A ; 110(12): 4458-63, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23417297

RESUMO

The Gram-negative enteroinvasive bacterium Shigella flexneri is responsible for the endemic form of bacillary dysentery, an acute rectocolitis in humans. S. flexneri uses a type III secretion system to inject effector proteins into host cells, thus diverting cellular functions to its own benefit. Protective immunity to reinfection requires several rounds of infection to be elicited and is short-lasting, suggesting that S. flexneri interferes with the priming of specific immunity. Considering the key role played by T-lymphocyte trafficking in priming of adaptive immunity, we investigated the impact of S. flexneri on T-cell dynamics in vivo. By using two-photon microscopy to visualize bacterium-T-cell cross-talks in the lymph nodes, where the adaptive immunity is initiated, we provide evidence that S. flexneri, via its type III secretion system, impairs the migration pattern of CD4(+) T cells independently of cognate recognition of bacterial antigens. We show that bacterial invasion of CD4(+) T lymphocytes occurs in vivo, and results in cell migration arrest. In the absence of invasion, CD4(+) T-cell migration parameters are also dramatically altered. Signals resulting from S. flexneri interactions with subcapsular sinus macrophages and dendritic cells, and recruitment of polymorphonuclear cells are likely to contribute to this phenomenon. These findings indicate that S. flexneri targets T lymphocytes in vivo and highlight the role of type III effector secretion in modulating host adaptive immune responses.


Assuntos
Imunidade Adaptativa , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Disenteria Bacilar/imunologia , Interações Hospedeiro-Patógeno/imunologia , Shigella flexneri/fisiologia , Animais , Disenteria Bacilar/genética , Feminino , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
14.
Proc Natl Acad Sci U S A ; 108(24): 9969-74, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628568

RESUMO

Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Vacinas Bacterianas/imunologia , Chlamydia trachomatis/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/uso terapêutico , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Chlamydia trachomatis/metabolismo , Feminino , Células HeLa , Humanos , Soros Imunes/imunologia , Imunização , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Células Th1/imunologia
15.
Cell Host Microbe ; 9(4): 263-72, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21501826

RESUMO

Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion requires a functional TTSS and results in inhibition of chemokine-induced T cell migration, an effect mediated by the TTSS effector IpgD, a phosphoinositide 4-phosphatase. Remarkably, IpgD injection into bystander T cells can occur in the absence of cell invasion. Upon IpgD-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), the pool of PIP(2) at the plasma membrane is reduced, leading to dephosphorylation of the ERM proteins and their inability to relocalize at one T cell pole upon chemokine stimulus, likely affecting the formation of the polarized edge required for cell migration. These results reveal a bacterial TTSS effector-mediated strategy to impair T cell function.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Movimento Celular/imunologia , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Shigella flexneri/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linhagem Celular , Membrana Celular/química , Quimiocinas/imunologia , Proteínas de Ligação a DNA/metabolismo , Disenteria Bacilar/genética , Disenteria Bacilar/metabolismo , Imunofluorescência , Interações Hospedeiro-Patógeno , Humanos , Fosfatidilinositol 4,5-Difosfato/deficiência , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Shigella flexneri/genética , Fatores de Transcrição/metabolismo
16.
J Biol Chem ; 285(39): 30126-38, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20592031

RESUMO

We present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-ß domains with the arginine-binding region at their interface. Although ArtJ is considered to belong to the periplasm, we found that both domains contain regions exposed on the bacterial surface. Moreover, we show that recombinant ArtJ binds to epithelial cells in vitro, suggesting a role for ArtJ in host-cell adhesion during Chlamydia infection. Experimental epitope mapping and computational analysis of physicochemical determinants of antibody recognition revealed that immunogenic epitopes reside mainly in the terminal (D1) domain of both CPn and CT ArtJ, whereas the surface properties of the respective binding-prone regions appear sufficiently different to assume divergent immunogenic behavior. Neutralization assays revealed that sera raised against CPn ArtJ D1 partially reduce both CPn and CT infectivity in vitro, suggesting that functional antibodies directed against this domain may potentially impair chlamydial infectivity. These findings suggest that the approach presented here, combining functional and structure-based analyses of evolutionary-related antigens can be a valuable tool for the identification of cross-species immunogenic epitopes for vaccine development.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Bactérias/química , Vacinas Bacterianas/química , Chlamydia trachomatis/química , Chlamydophila pneumoniae/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/imunologia , Aderência Bacteriana/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Infecções por Chlamydophila/prevenção & controle , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/imunologia , Cristalografia por Raios X , Mapeamento de Epitopos/métodos , Estrutura Terciária de Proteína
17.
Infect Immun ; 77(9): 4168-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596772

RESUMO

Despite several decades of intensive studies, no vaccines against Chlamydia trachomatis, an intracellular pathogen causing serious ocular and urogenital diseases, are available yet. Infection-induced immunity in both animal models and humans strongly supports the notion that for a vaccine to be effective a strong CD4(+) Th1 immune response should be induced. In the course of our vaccine screening program based on the selection of chlamydial proteins eliciting cell-mediated immunity, we have found that CT043, a protein annotated as hypothetical, induces CD4(+) Th1 cells both in chlamydia-infected mice and in human patients with diagnosed C. trachomatis genital infection. DNA priming/protein boost immunization with CT043 results in a 2.6-log inclusion-forming unit reduction in the murine lung infection model. Sequence analysis of CT043 from C. trachomatis human isolates belonging to the most representative genital serovars revealed a high degree of conservation, suggesting that this antigen could provide cross-serotype protection. Therefore, CT043 is a promising vaccine candidate against C. trachomatis infection.


Assuntos
Antígenos de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Células Th1/imunologia , Animais , Vacinas Bacterianas/imunologia , Chlamydia muridarum/imunologia , Feminino , Doenças dos Genitais Femininos/imunologia , Humanos , Imunização , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Porinas/imunologia
18.
Blood ; 113(18): 4232-9, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19176317

RESUMO

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Assuntos
Bactérias/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Mieloides/imunologia , Células Mieloides/microbiologia , Técnicas de Cultura de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Rim/metabolismo , Luciferases/metabolismo , Ativação Linfocitária/imunologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genética , Transfecção
19.
J Infect Dis ; 197(8): 1124-32, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18462162

RESUMO

Cathelicidins play a pivotal role in innate immunity, providing a first barrier against bacterial infections at both mucosal and systemic sites. In this work, we have investigated the mechanisms by which Neisseria meningitidis serogroup B (MenB) survives at the physiological concentrations of human and mouse cathelicidin LL37 and CRAMP, respectively. By analyzing the global transcription profile of MenB in the presence or absence of CRAMP, 21 genes were found to be differentially expressed. Among these genes, the hypothetical genes NMB0741 and NMB1828 were up-regulated. When either of the 2 genes was deleted, MenB resistance to cathelicidins was impaired in vitro. Furthermore, the deletion of either of the 2 genes substantially reduced MenB virulence, as measured by the number of bacteria found in the blood of infected animals. Altogether, these results indicate that NMB0741 and NMB1828 are novel genes that have never been described before and that are involved in MenB cathelicidin resistance.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Meningite Meningocócica/microbiologia , Neisseria meningitidis Sorogrupo B/efeitos dos fármacos , Neisseria meningitidis Sorogrupo B/genética , Animais , Bacteriemia/microbiologia , Western Blotting , Catelicidinas , Resistência Microbiana a Medicamentos , Feminino , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica , Humanos , Meningite Meningocócica/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Insercional , Neisseria meningitidis Sorogrupo B/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
20.
Microbiology (Reading) ; 152(Pt 12): 3733-3749, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17159225

RESUMO

To better understand Neisseria meningitidis genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491 and FAM18, and N. gonorrhoeae FA1090. By comparing hybridization data to genome sequences, the core N. meningitidis genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between N. lactamica and N. meningitidis. However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The N. meningitidis genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Genômica , Neisseria meningitidis/genética , Cápsulas Bacterianas/genética , Transporte Biológico/genética , Análise por Conglomerados , Elementos de DNA Transponíveis , Ilhas Genômicas , Sequências Repetitivas Dispersas , Neisseria cinerea/genética , Neisseria gonorrhoeae/genética , Neisseria lactamica/genética , Neisseria meningitidis/patogenicidade , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Prófagos/genética , Sintenia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...