Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37066307

RESUMO

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

2.
Front Bioeng Biotechnol ; 10: 855777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795163

RESUMO

Hematopoiesis takes place in the bone marrow and is supported by a complex cellular and molecular network in the bone marrow microenvironment. Commonly used models of the human bone marrow microenvironment include murine models and two-dimensional and three-dimensional tissue cultures. While these model systems have led to critical advances in the field, they fail to recapitulate many aspects of the human bone marrow. This has limited our understanding of human bone marrow pathophysiology and has led to deficiencies in therapy for many bone marrow pathologies such as bone marrow failure syndromes and leukemias. Therefore, we have developed a modular murine bone marrow microenvironment-on-chip using a commercially available microfluidic platform. This model includes a vascular channel separated from the bone marrow channel by a semi-porous membrane and incorporates critical components of the bone marrow microenvironment, including osteoblasts, endothelial cells, mesenchymal stem cells, and hematopoietic stem and progenitor cells. This system is capable of maintaining functional hematopoietic stem cells in vitro for at least 14 days at frequencies similar to what is found in the primary bone marrow. The modular nature of this system and its accessibility will allow for acceleration of our understanding of the bone marrow.

3.
Adv Ther (Weinh) ; 5(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35097186

RESUMO

Micheliolide (MCL) is a naturally occurring sesquiterpene lactone that selectively targets leukemic stem cells (LSCs), which persist after conventional chemotherapy for myeloid leukemias, leading to disease relapse. To overcome modest MCL cytotoxicity, analogs with ≈two-threefold greater cytotoxicity against LSCs are synthesized via late-stage chemoenzymatic C-H functionalization. To enhance bone marrow delivery, MCL analogs are entrapped within bone-targeted polymeric nanoparticles (NPs). Robust drug loading capacities of up to 20% (mg drug mg-1 NP) are obtained, with release dominated by analog hydrophobicity. NPs loaded with a hydrolytically stable analog are tested in a leukemic mouse model. Median survival improved by 13% and bone marrow LSCs are decreased 34-fold following NPMCL treatments versus controls. Additionally, selective leukemic cell and LSC cytotoxicity of the treatment versus normal hematopoietic cells is observed. Overall, these studies demonstrate that MCL-based antileukemic agents combined with bone-targeted NPs offer a promising strategy for eradicating LSCs.

4.
JBMR Plus ; 5(10): e10516, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693187

RESUMO

The bone marrow microenvironment (BMME) regulates hematopoiesis through a complex network of cellular and molecular components. Hematologic malignancies reside within, and extensively interact with, the same BMME. These interactions consequently alter both malignant and benign hematopoiesis in multiple ways, and can encompass initiation of malignancy, support of malignant progression, resistance to chemotherapy, and loss of normal hematopoiesis. Herein, we will review supporting studies for interactions of the BMME with hematologic malignancies and discuss challenges still facing this exciting field of research. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
FASEB J ; 35(4): e21402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724567

RESUMO

Leukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation. Leukemic cells derived from CCL3-/- mice were shown to minimally engraft in a normal BMME, thereby demonstrating that CCL3 signaling was necessary to recapitulate bcCML disease. Further analysis showed disruption in hematopoiesis within the BMME in the bcCML model. To rescue the altered BMME, therapeutic inhibition of CCL3 signaling was investigated using bone-targeted nanoparticles (NP) to deliver Maraviroc, an inhibitor of C-C chemokine receptor type 5 (CCR5), a CCL3 receptor. NP-mediated Maraviroc delivery partially restored the BMME, significantly reduced leukemic burden, and improved survival. Overall, our results demonstrate that inhibiting CCL3 via CCR5 antagonism is a potential therapeutic approach to restore normal hematopoiesis as well as reduce leukemic burden within the BMME.


Assuntos
Leucemia/tratamento farmacológico , Animais , Proteínas de Bactérias , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Proteínas de Fluorescência Verde , Leucemia/etiologia , Leucemia Mieloide Aguda , Proteínas Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Doses de Radiação
6.
Methods Mol Biol ; 2230: 467-477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197034

RESUMO

The adult hematopoietic system is repopulated in its entirety from a rare cell type known as hematopoietic stem cells (HSCs) that reside in the marrow space throughout the skeletal system. Here we describe the isolation and identification of HSCs both phenotypically and functionally.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/citologia , Adulto , Animais , Osso e Ossos/citologia , Humanos , Camundongos
7.
Int J Radiat Biol ; 95(11): 1447-1461, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329495

RESUMO

Purpose: Incidents, such as nuclear facility accidents and the release of a 'dirty bomb', might result in not only external irradiation of personnel, but additional internal exposures through concomitant inhalation and/or ingestion of radioactive particulates. The purpose of this study was to define the impact of such a combination of radiation injuries on the hematopoietic niche.Material and methods: To assess changes in the murine hematopoietic system, we used a combined exposure of total body irradiation (TBI, 6 Gy) followed immediately by an internal (intraperitoneal) administration of 100 µCi of soluble 137Cs. We then evaluated acute survival in combined versus single modality exposure groups, as well as assessing hematopoietic function at 12 and 26 week time points.Results: Acutely, the combination of external and internal exposures led to an unexpected delay in excretion of 137Cs, increasing the absorbed dose in the combined exposure group and leading to mortality from an acute hematopoietic syndrome. At 12 weeks, all exposure paradigms resulted in decreased numbers of phenotypic hematopoietic stem cells (HSCs), particularly the short-term HSCs (ST-HSC); long-term HSCs (LT-HSC) were depleted only in the internal and combined exposure groups. At 26 weeks, there was significant anemia in both the TBI alone and combined exposure groups. There were decreased numbers in both the LT- and ST-HSCs and decreased functionality, as measured by competitive repopulation, was seen in all radiation groups, with the greatest effects seen in the internal and combined exposure groups.Conclusions: Our data indicate that a combined injury of sublethal external irradiation with internal contamination induces significant and persistent changes in the hematopoietic system, as may have been predicted from the literature and our own group's findings. However, a novel observation was that the combined exposure led to an alteration in the excretion kinetics of the internal contamination, increasing the acute effects beyond those anticipated. As a result, we believe that a combined exposure poses a unique challenge to the medical community during both the acute and, possibly, delayed recovery stages.


Assuntos
Medula Óssea/efeitos da radiação , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Irradiação Corporal Total , Animais , Células Cultivadas , Radioisótopos de Césio , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Lesões Experimentais por Radiação/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
8.
JCI Insight ; 52019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30998506

RESUMO

The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function, though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mφs) directs HSC platelet-bias. Mφs from the marrow of aged mice and humans exhibited an activated phenotype, with increased expression of inflammatory signals. Aged marrow Mφs also displayed decreased phagocytic function. Senescent neutrophils, typically cleared by marrow Mφs, were markedly increased in aged mice, consistent with functional defects in Mφ phagocytosis and efferocytosis. In aged mice, Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity, which can process pro-IL1B, was increased in marrow Mφs and neutrophils. Mechanistically, IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice, depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mφs induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mφs and IL1B in the age-associated lineage-skewing of HSCs, and reveals the therapeutic potential of their manipulation as antigeronic targets.


Assuntos
Envelhecimento/fisiologia , Plaquetas/metabolismo , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animais , Medula Óssea/patologia , Caspase 1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Fagocitose , Fenótipo , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Receptor Tirosina Quinase Axl
9.
Bone ; 119: 8-12, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29778716

RESUMO

Hematopoietic stem cells (HSCs) require a supportive microenvironment to regulate their function and produce sufficient hematopoietic cells over the lifetime of an individual. With the exception of fish, all vertebrates, including mammals, maintain HSCs in a complex niche within the bone marrow. Several bone specific cellular populations have been implicated as components of the HSC niche and are part of a complex network that regulates HSC functions. However, the full extent of interactions within the HSC niche, and the role of individual cell populations remain to be fully elucidated. Further, it is not clear why fish are the exception, and what advantage is gained by housing HSCs in the bone marrow. To gain a better understanding of hematopoiesis and the mechanisms that drive hematopoietic disease processes a clearer picture of the complex HSC regulatory interactions in the bone marrow microenvironment is required.


Assuntos
Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Células da Medula Óssea/citologia , Humanos , Modelos Biológicos , Osteoblastos/citologia
10.
Sci Rep ; 8(1): 14691, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279500

RESUMO

The chemokine CCL3 is frequently overexpressed in malignancies and overexpression leads to microenvironmental dysfunction. In murine models of chronic myelogenous leukemia (CML), CCL3 is critical for the maintenance of a leukemia stem cell population, and leukemia progression. With CCL3 implicated as a potentially viable therapeutic target, it is important to carefully characterize its role in normal hematopoietic homeostasis. CCL3-/- mice were used to evaluate the role of CCL3 in regulating hematopoietic stem and progenitor cell (HSPC) populations. CCL3-/- mice had loss of mature myeloid populations, while myeloid progenitors and HSPCs were increased, and microenvironmental populations were unchanged. These data show that CCL3 promotes myeloid lineage differentiation and the size of the HSPC pool independent of the supportive bone marrow microenvironment. Our results demonstrate a previously unrecognized role of CCL3 in the maintenance of homeostatic hematopoiesis that should be evaluated when targeting CCL3 signaling for the treatment of hematologic malignancy.


Assuntos
Diferenciação Celular , Quimiocina CCL3/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Animais , Contagem de Células , Quimiocina CCL3/deficiência , Camundongos , Camundongos Knockout
11.
Nat Commun ; 9(1): 4239, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315161

RESUMO

Inv(3q26) and t(3:3)(q21;q26) are specific to poor-prognosis myeloid malignancies, and result in marked overexpression of EVI1, a zinc-finger transcription factor and myeloid-specific oncoprotein. Despite extensive study, the mechanism by which EVI1 contributes to myeloid malignancy remains unclear. Here we describe a new mouse model that mimics the transcriptional effects of 3q26 rearrangement. We show that EVI1 overexpression causes global distortion of hematopoiesis, with suppression of erythropoiesis and lymphopoiesis, and marked premalignant expansion of myelopoiesis that eventually results in leukemic transformation. We show that myeloid skewing is dependent on DNA binding by EVI1, which upregulates Spi1, encoding master myeloid regulator PU.1. We show that EVI1 binds to the -14 kb upstream regulatory element (-14kbURE) at Spi1; knockdown of Spi1 dampens the myeloid skewing. Furthermore, deletion of the -14kbURE at Spi1 abrogates the effects of EVI1 on hematopoietic stem cells. These findings support a novel mechanism of leukemogenesis through EVI1 overexpression.


Assuntos
Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Alelos , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Hematopoese/genética , Hematopoese/fisiologia , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
12.
Bioorg Med Chem ; 26(7): 1365-1373, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826596

RESUMO

The plant-derived sesquiterpene lactone parthenolide (PTL) was recently found to possess promising anticancer activity but elaboration of this natural product scaffold for optimization of its pharmacological properties has proven challenging via available chemical methods. In this work, P450-catalyzed C-H hydroxylation of positions C9 and C14 in PTL was coupled to carbamoylation chemistry to yield a panel of novel carbamate-based PTL analogs ('parthenologs'). These compounds, along with a series of other C9- and C14-functionalized parthenologs obtained via O-H acylation, alkylation, and metal-catalyzed carbene insertion, were profiled for their cytotoxicity against a diverse panel of human cancer cell lines. These studies led to the discovery of several parthenologs with significantly improved anticancer activity (2-14-fold) compared to the parent molecule. Most interestingly, two PTL analogs with high cytotoxicity (LC50∼1-3µM) against T cell leukemia (Jurkat), mantle cell lymphoma (JeKo-1), and adenocarcinoma (HeLa) cells as well as a carbamate derivative with potent activity (LC50=0.6µM) against neuroblastoma cells (SK-N-MC) were obtained. In addition, these analyses resulted in the identification of parthenologs featuring both a broad spectrum and tumor cell-specific anticancer activity profile, thus providing valuable probes for the future investigation of biomolecular targets that can affect cell viability across multiple as well as specific types of human cancers. Altogether, these results highlight the potential of P450-mediated chemoenzymatic C-H functionalization toward tuning and improving the anticancer activity of the natural product parthenolide.


Assuntos
Antineoplásicos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sesquiterpenos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
J Bone Miner Res ; 32(6): 1320-1331, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28277610

RESUMO

Notch signaling is critical for osteoblastic differentiation; however, the specific contribution of individual Notch ligands is unknown. Parathyroid hormone (PTH) regulates the Notch ligand Jagged1 in osteoblastic cells. To determine if osteolineage Jagged1 contributes to bone homeostasis, selective deletion of Jagged1 in osteolineage cells was achieved through the presence of Prx1 promoter-driven Cre recombinase expression, targeting mesenchymal stem cells (MSCs) and their progeny (PJag1 mice). PJag1 mice were viable and fertile and did not exhibit any skeletal abnormalities at 2 weeks of age. At 2 months of age, however, PJag1 mice had increased trabecular bone mass compared to wild-type (WT) littermates. Dynamic histomorphometric analysis showed increased osteoblastic activity and increased mineral apposition rate. Immunohistochemical analysis showed increased numbers of osteocalcin-positive mature osteoblasts in PJag1 mice. Also increased phenotypically defined Lin- /CD45- /CD31- /Sca1- /CD51+ osteoblastic cells were measured by flow cytometric analysis. Surprisingly, phenotypically defined Lin- /CD45- /CD31- /Sca1+ /CD51+ MSCs were unchanged in PJag1 mice as measured by flow cytometric analysis. However, functional osteoprogenitor (OP) cell frequency, measured by Von Kossa+ colony formation, was decreased, suggesting that osteolineage Jagged1 contributes to maintenance of the OP pool. The trabecular bone increases were not due to osteoclastic defects, because PJag1 mice had increased bone resorption. Because PTH increases osteoblastic Jagged1, we sought to understand if osteolineage Jagged1 modulates PTH-mediated bone anabolism. Intermittent PTH treatment resulted in a significantly greater increase in BV/TV in PJag1 hind limbs compared to WT. These findings demonstrate a critical role of osteolineage Jagged1 in bone homeostasis, where Jagged1 maintains the transition of OP to maturing osteoblasts. This novel role of Jagged1 not only identifies a regulatory loop maintaining appropriate populations of osteolineage cells, but also provides a novel approach to increase trabecular bone mass, particularly in combination with PTH, through modulation of Jagged1. © 2017 American Society for Bone and Mineral Research.


Assuntos
Linhagem da Célula , Proteína Jagged-1/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso Esponjoso/citologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Lâmina de Crescimento/citologia , Lâmina de Crescimento/diagnóstico por imagem , Lâmina de Crescimento/metabolismo , Ligantes , Camundongos , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Células-Tronco/efeitos dos fármacos , Microtomografia por Raio-X
14.
Blood ; 127(5): 616-25, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637787

RESUMO

In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.


Assuntos
Medula Óssea/patologia , Microambiente Celular , Células-Tronco Hematopoéticas/patologia , Síndromes Mielodisplásicas/patologia , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Transgenes
15.
Bonekey Rep ; 3: 572, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25228985
16.
Methods Mol Biol ; 1130: 315-324, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24482184

RESUMO

The adult hematopoietic system is repopulated in its entirety from a rare cell type known as hematopoietic stem cells (HSCs) that reside in the marrow space throughout the skeletal system. Here we describe the isolation and identification of HSCs both phenotypically and functionally.


Assuntos
Ensaio de Unidades Formadoras de Colônias , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Cultura Primária de Células , Animais , Técnicas de Cocultura , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
17.
Stem Cells ; 31(2): 372-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169593

RESUMO

Hematopoietic stem and progenitor cells (HSPCs), which continuously maintain all mature blood cells, are regulated within the marrow microenvironment. We previously reported that pharmacologic treatment of naïve mice with prostaglandin E2 (PGE2) expands HSPCs. However, the cellular mechanisms mediating this expansion remain unknown. Here, we demonstrate that PGE2 treatment in naïve mice inhibits apoptosis of HSPCs without changing their proliferation rate. In a murine model of sublethal total body irradiation (TBI), in which HSPCs are rapidly lost, treatment with a long-acting PGE2 analog (dmPGE2) reversed the apoptotic program initiated by TBI. dmPGE2 treatment in vivo decreased the loss of functional HSPCs following radiation injury, as demonstrated both phenotypically and by their increased reconstitution capacity. The antiapoptotic effect of dmPGE2 on HSPCs did not impair their ability to differentiate in vivo, resulting instead in improved hematopoietic recovery after TBI. dmPGE2 also increased microenvironmental cyclooxygenase-2 expression and expanded the α-smooth muscle actin-expressing subset of marrow macrophages, thus enhancing the bone marrow microenvironmental response to TBI. Therefore, in vivo treatment with PGE2 analogs may be particularly beneficial to HSPCs in the setting of injury by targeting them both directly and also through their niche. The current data provide rationale for in vivo manipulation of the HSPC pool as a strategy to improve recovery after myelosuppression.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Actinas/genética , Actinas/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/efeitos da radiação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/análogos & derivados , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Macrófagos/patologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Camundongos Transgênicos , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/patologia , Irradiação Corporal Total
18.
PLoS One ; 7(7): e40602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792383

RESUMO

The pathogenesis of adhesions following primary tendon repair is poorly understood, but is thought to involve dysregulation of matrix metalloproteinases (Mmps). We have previously demonstrated that Mmp9 gene expression is increased during the inflammatory phase following murine flexor digitorum (FDL) tendon repair in association with increased adhesions. To further investigate the role of Mmp9, the cellular, molecular, and biomechanical features of healing were examined in WT and Mmp9(-/-) mice using the FDL tendon repair model. Adhesions persisted in WT, but were reduced in Mmp9(-/-) mice by 21 days without any decrease in strength. Deletion of Mmp9 resulted in accelerated expression of neo-tendon associated genes, Gdf5 and Smad8, and delayed expression of collagen I and collagen III. Furthermore, WT bone marrow cells (GFP(+)) migrated specifically to the tendon repair site. Transplanting myeloablated Mmp9(-/-) mice with WT marrow cells resulted in greater adhesions than observed in Mmp9(-/-) mice and similar to those seen in WT mice. These studies show that Mmp9 is primarily derived from bone marrow cells that migrate to the repair site, and mediates adhesion formation in injured tendons. Mmp9 is a potential target to limit adhesion formation in tendon healing.


Assuntos
Células da Medula Óssea/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Traumatismos dos Tendões/enzimologia , Traumatismos dos Tendões/patologia , Animais , Movimento Celular/fisiologia , Feminino , Fibrose , Regulação da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Resistência à Tração , Aderências Teciduais , Cicatrização/genética
19.
Blood ; 120(2): 303-13, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22596259

RESUMO

Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment. Controversy exists on N-cadherin's role in support of HSCs. Specifically, it is unknown whether microenvironmental N-cadherin is required for normal marrow microarchitecture and for hematopoiesis. To determine whether osteoblastic N-cadherin is required for HSC regulation, we used a genetic murine model in which deletion of Cdh2, the gene encoding N-cadherin, has been targeted to cells of the osteoblastic lineage. Targeted deletion of N-cadherin resulted in an age-dependent bone phenotype, ultimately characterized by decreased mineralized bone, but no difference in steady-state HSC numbers or function at any time tested, and normal recovery from myeloablative injury. Intermittent parathyroid hormone (PTH) treatment is well established as anabolic to bone and to increase marrow HSCs through microenvironmental interactions. Lack of osteoblastic N-cadherin did not block the bone anabolic or the HSC effects of PTH treatment. This report demonstrates that osteoblastic N-cadherin is not required for regulation of steady-state hematopoiesis, HSC response to myeloablation, or for rapid expansion of HSCs through intermittent treatment with PTH.


Assuntos
Caderinas/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Sequência de Bases , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Densidade Óssea/fisiologia , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Osso e Ossos/anatomia & histologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Caderinas/deficiência , Caderinas/genética , Microambiente Celular/fisiologia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Blood ; 119(11): 2489-99, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22262765

RESUMO

Microenvironmental expansion of hematopoietic stem cells (HSCs) is induced by treatment with parathyroid hormone (PTH) or activation of the PTH receptor (PTH1R) in osteoblastic cells; however, the osteoblastic subset mediating this action of PTH is unknown. Osteocytes are terminally differentiated osteoblasts embedded in mineralized bone matrix but are connected with the BM. Activation of PTH1R in osteocytes increases osteoblastic number and bone mass. To establish whether osteocyte-mediated PTH1R signaling expands HSCs, we studied mice expressing a constitutively active PTH1R in osteocytes (TG mice). Osteoblasts, osteoclasts, and trabecular bone were increased in TG mice without changes in BM phenotypic HSCs or HSC function. TG mice had progressively increased trabecular bone but decreased HSC function. In severely affected TG mice, phenotypic HSCs were decreased in the BM but increased in the spleen. TG osteocytes had no increase in signals associated with microenvironmental HSC support, and the spindle-shaped osteoblastic cells that increased with PTH treatment were not present in TG bones. These findings demonstrate that activation of PTH1R signaling in osteocytes does not expand BM HSCs, which are instead decreased in TG mice. Therefore, osteocytes do not mediate the HSC expansion induced by PTH1R signaling. Further, osteoblastic expansion is not sufficient to increase HSCs.


Assuntos
Remodelação Óssea , Células-Tronco Hematopoéticas/citologia , Osteoblastos/citologia , Osteócitos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Animais , Citometria de Fluxo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Transgênicos , Mutação/genética , Osteoblastos/metabolismo , Osteócitos/citologia , Hormônio Paratireóideo/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...