Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Toxicol Chem ; 32(1): 93-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097077

RESUMO

Various international and national regulations hold polluters liable for the cleanup of released hazardous substances and the restoration/rehabilitation of natural resources to preincident baseline conditions, a process often referred to as natural resource damage assessment and restoration (NRDAR). Here, we, the authors, describe how global climate change (GCC) will challenge each of the steps of NRDAR processes and offer eight recommendations to improve these processes in light of GCC. First, we call for a better understanding of the net effects of GCC and contaminants on natural resources. Second, we urge facilities and environmental managers to plan for GCC-related factors that are expected to increase the probability of contaminant releases. Third, we suggest re-evaluating definitions of baseline and reference conditions given that GCC will alter both their trajectories and variability. Fourth, we encourage long-term monitoring to improve the quantification of baseline conditions that will change as climate changes. This will enhance the accuracy of injury assessments, the effectiveness of restoration, and the detection of early warning signs that ecosystems are approaching tipping points. Fifth, in response to or anticipation of GCC, restoration projects may need to be conducted in areas distant from the site of injury or focused on functionally equivalent natural resources; thus, community involvement in NRDAR processes will be increasingly important. Sixth, we promote using NRDAR restoration projects as opportunities to mitigate GCC-related impacts. Seventh, we recommend adaptive management approaches to NRDAR processes and communication of successes and failures widely. Finally, we recommend focusing on managing the stressors that might be exacerbated by GCC, such as pollution and habitat loss, because there is a long history of successfully mitigating these stressors, which can be more easily managed on local scales than climate change. We believe that adoption of these recommendations will lead to a more efficacious NRDAR process, despite the challenges posed by climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Poluição Ambiental/estatística & dados numéricos , Clima , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Política Ambiental , Poluição Ambiental/legislação & jurisprudência , Poluição Ambiental/prevenção & controle
3.
Environ Toxicol Chem ; 32(1): 13-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097130

RESUMO

This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.


Assuntos
Mudança Climática , Meio Ambiente , Fundações , Química , Clima , Ecotoxicologia , Educação , Poluentes Ambientais/toxicidade , Poluição Ambiental , Humanos , Cooperação Internacional , Medição de Risco , Ciência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...