Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; : 100560, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750995

RESUMO

Zinc is required for virtually all biological processes. In plasma, Zn2+ is predominantly transported by human serum albumin (HSA), which possesses two Zn2+-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with 7 structurally characterized FA-binding sites (named FA1-FA7) known. FA-binding inhibits Zn2+-HSA interactions, in a manner that can impact upon haemostasis and cellular zinc uptake, but the degree to which FA-binding at specific sites contributes this inhibition is unclear. Wildtype HSA and H9A, H67A, H247A, and Y150F/R257A/S287A (FA2-KO) mutant albumins were expressed in Pichia pastoris. ITC studies revealed that the Zn2+-binding capacity at the high-affinity Zn2+ site (site A) was reduced in H67A and H247A mutants, with site B less affected. The H9A mutation decreased Zn2+ binding at the lower-affinity site, establishing His9 as a site B ligand. Zn2+ binding to HSA and H9A was compromised by palmitate, consistent with FA-binding affecting site A. 13C-NMR experiments confirmed that the FA2-KO mutations prohibited FA-binding at site FA2. In contrast to wildtype HSA, Zn2+-binding to the FA2-KO mutant was unaffected by myristate, suggesting that FA-binding at FA2 is solely responsible for inhibition. Molecular dynamics studies identified the steric obstruction exerted by a FA bound in site FA2 that impedes the conformational change from open (FA-loaded) to closed (FA-free) states, required for Zn2+ to bind at site A. The successful targeting of the FA2 site will aid functional studies exploring the interplay between circulating FA levels and plasma Zn2+ speciation in health and disease.

2.
Chem Sci ; 14(23): 6244-6258, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325156

RESUMO

Serum albumin-Co2+ interactions are of clinical importance. They play a role in mediating the physiological effects associated with cobalt toxicity and are central to the albumin cobalt binding (ACB) assay for diagnosis of myocardial ischemia. To further understand these processes, a deeper understanding of albumin-Co2+ interactions is required. Here, we present the first crystallographic structures of human serum albumin (HSA; three structures) and equine serum albumin (ESA; one structure) in complex with Co2+. Amongst a total of sixteen sites bearing a cobalt ion across the structures, two locations were prominent, and they relate to metal-binding sites A and B. Site-directed mutagenesis and isothermal titration calorimetry (ITC) were employed to characterise sites on HSA. The results indicate that His9 and His67 contribute to the primary (putatively corresponding to site B) and secondary Co2+-binding sites (site A), respectively. The presence of additional multiple weak-affinity Co2+ binding sites on HSA was also supported by ITC studies. Furthermore, addition of 5 molar equivalents of the non-esterified fatty acid palmitate (C16:0) reduced the Co2+-binding affinity at both sites A and B. The presence of bound myristate (C14:0) in the HSA crystal structures provided insight into the fatty acid-mediated structural changes that diminish the affinity of the protein toward Co2+. Together, these data provide further support for the idea that ischemia-modified albumin corresponds to albumin with excessive fatty-acid loading. Collectively, our findings provide a comprehensive understanding of the molecular underpinnings governing Co2+ binding to serum albumin.

3.
Nutrients ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242238

RESUMO

Magnesium (Mg2+) has many physiological functions within the body. These include important roles in maintaining cardiovascular functioning, where it contributes to the regulation of cardiac excitation-contraction coupling, endothelial functioning and haemostasis. The haemostatic roles of Mg2+ impact upon both the protein and cellular arms of coagulation. In this review, we examine how Mg2+ homeostasis is maintained within the body and highlight the various molecular roles attributed to Mg2+ in the cardiovascular system. In addition, we describe how nutritional and/or disease-associated magnesium deficiency, seen in some metabolic conditions, has the potential to influence cardiac and vascular outcomes. Finally, we also examine the potential for magnesium supplements to be employed in the prevention and treatment of cardiovascular disorders and in the management of cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Deficiência de Magnésio , Humanos , Deficiência de Magnésio/complicações , Deficiência de Magnésio/metabolismo , Magnésio , Suplementos Nutricionais , Doenças Cardiovasculares/prevenção & controle , Fenômenos Fisiológicos Cardiovasculares
4.
Sci Immunol ; 8(79): eade1413, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706172

RESUMO

Marginal zone (MZ) B cells are one of the main actors of T-independent (TI) responses in mice. To identify the B cell subset(s) involved in such responses in humans, we vaccinated healthy individuals with Pneumovax, a model TI vaccine. By high-throughput repertoire sequencing of plasma cells (PCs) isolated 7 days after vaccination and of different B cell subpopulations before and after vaccination, we show that the PC response mobilizes large clones systematically, including an immunoglobulin M component, whose diversification and amplification predated the pneumococcal vaccination. These clones could be mainly traced back to MZ B cells, together with clonally related IgA+ and, to a lesser extent, IgG+CD27+ B cells. Recombinant monoclonal antibodies isolated from large PC clones recognized a wide array of bacterial species from the gut flora, indicating that TI responses in humans largely mobilize MZ and switched B cells that most likely prediversified during mucosal immune responses against bacterial antigens and acquired pneumococcal cross-reactivity through somatic hypermutation.


Assuntos
Antígenos de Bactérias , Subpopulações de Linfócitos B , Animais , Humanos , Camundongos , Linfócitos B , Tecido Linfoide , Vacinas Pneumocócicas , Polissacarídeos , Intestinos
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142215

RESUMO

The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70-85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.


Assuntos
Hemostáticos , Inibidores de Hidroximetilglutaril-CoA Redutases , Trombose , Ácidos Graxos , Ácidos Graxos não Esterificados , Ácidos Fíbricos , Fibrinogênio , Humanos , Cininogênio de Alto Peso Molecular , Lipase , Plasma/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica Humana , Zinco/química
6.
Cell Rep ; 38(10): 110474, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263577

RESUMO

A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.


Assuntos
Vespas , Síndrome de Wiskott-Aldrich , Animais , Apoptose , Autoanticorpos , Centro Germinativo/patologia , Camundongos , Camundongos Knockout , Síndrome de Wiskott-Aldrich/patologia
7.
Proc Natl Acad Sci U S A ; 116(45): 22471-22477, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628254

RESUMO

The opening of a Watson-Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/genética , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , DNA Helicases/genética , DNA Bacteriano/química , Cinética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
8.
J Exp Med ; 215(8): 2035-2053, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29959173

RESUMO

To what extent immune responses against the gut flora are compartmentalized within mucosal tissues in homeostatic conditions remains a much-debated issue. We describe here, based on an inducible AID fate-mapping mouse model, that systemic memory B cell subsets, including mainly IgM+ B cells in spleen, together with IgA+ plasma cells in spleen and bone marrow, are generated in mice in the absence of deliberate immunization. While the IgA component appears dependent on the gut flora, IgM memory B cells are still generated in germ-free mice, albeit to a reduced extent. Clonal relationships and renewal kinetics after anti-CD20 treatment reveal that this long-lasting splenic population is mainly sustained by output of B cell clones persisting in mucosal germinal centers. IgM-secreting hybridomas established from splenic IgM memory B cells showed reactivity against various bacterial isolates and endogenous retroviruses. Ongoing activation of B cells in gut-associated lymphoid tissues thus generates a diversified systemic compartment showing long-lasting clonal persistence and protective capacity against systemic bacterial infections.


Assuntos
Antibacterianos/imunologia , Imunidade nas Mucosas , Imunoglobulina M/metabolismo , Memória Imunológica , Baço/imunologia , Envelhecimento/imunologia , Animais , Antígenos CD/metabolismo , Linfócitos B/imunologia , Proteínas de Bactérias/metabolismo , Medula Óssea/metabolismo , Citidina Desaminase/metabolismo , Microbioma Gastrointestinal , Vida Livre de Germes , Centro Germinativo/citologia , Imunização , Imunoglobulina A/metabolismo , Cinética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação/genética , Plasmócitos/citologia , Transdução de Sinais , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
9.
DNA Repair (Amst) ; 46: 37-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481099

RESUMO

Rev3, the catalytic subunit of yeast DNA polymerase ζ, is required for UV resistance and UV-induced mutagenesis, while its mammalian ortholog, REV3L, plays further vital roles in cell proliferation and embryonic development. To assess the contribution of REV3L catalytic activity to its in vivo function, we generated mutant mouse strains in which one or two Ala residues were substituted to the Asp of the invariant catalytic YGDTDS motif. The simultaneous mutation of both Asp (ATA) phenocopies the Rev3l knockout, which proves that the catalytic activity is mandatory for the vital functions of Rev3L, as reported recently. Surprisingly, although the mutation of the first Asp severely impairs the enzymatic activity of other B-family DNA polymerases, the corresponding mutation of Rev3 (ATD) is hypomorphic in yeast and mouse, as it does not affect viability and proliferation and moderately impacts UVC-induced cell death and mutagenesis. Interestingly, Rev3l hypomorphic mutant mice display a distinct, albeit modest, alteration of the immunoglobulin gene mutation spectrum at G-C base pairs, further documenting its role in this process.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Sequência Conservada , Proteínas de Ligação a DNA/deficiência , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/metabolismo , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Imunoglobulinas/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Raios Ultravioleta
10.
Immunity ; 40(4): 608-20, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24745335

RESUMO

Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyer's patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyer's patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyer's patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.


Assuntos
Infecções por Clostridium/imunologia , Clostridium/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Imunoglobulina A/metabolismo , Intestinos/imunologia , Plasmócitos/imunologia , Células Th17/imunologia , Animais , Antígenos de Bactérias/imunologia , Comunicação Celular , Diferenciação Celular , Interações Hospedeiro-Patógeno , Tecido Linfoide/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...