Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(18): 187602, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441950

RESUMO

Evidence is presented for a first-order magnetic phase transition in a gated two-dimensional semiconductor, monolayer-MoS_{2}. The phase boundary separates a ferromagnetic phase at low electron density and a paramagnetic phase at high electron density. Abrupt changes in the optical response signal an abrupt change in the magnetism. The magnetic order is thereby controlled via the voltage applied to the gate electrode of the device. Accompanying the change in magnetism is a large change in the electron effective mass.

2.
Nat Nanotechnol ; 15(4): 283-288, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32152557

RESUMO

Atomically thin semiconductors made from transition metal dichalcogenides (TMDs) are model systems for investigations of strong light-matter interactions and applications in nanophotonics, optoelectronics and valleytronics. However, the photoluminescence spectra of TMD monolayers display a large number of features that are particularly challenging to decipher. On a practical level, monochromatic TMD-based emitters would be beneficial for low-dimensional devices, but this challenge is yet to be resolved. Here, we show that graphene, directly stacked onto TMD monolayers, enables single and narrow-line photoluminescence arising solely from TMD neutral excitons. This filtering effect stems from complete neutralization of the TMD by graphene, combined with selective non-radiative transfer of long-lived excitonic species to graphene. Our approach is applied to four tungsten- and molybdenum-based TMDs and establishes TMD/graphene heterostructures as a unique set of optoelectronic building blocks that are suitable for electroluminescent systems emitting visible and near-infrared photons at near THz rate with linewidths approaching the homogeneous limit.

3.
Nat Nanotechnol ; 14(5): 432-436, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858519

RESUMO

Coulomb interactions are crucial in determining the ground state of an ideal two-dimensional electron gas (2DEG) in the limit of low electron densities1. In this regime, Coulomb interactions dominate over single-particle phase-space filling. In silicon and gallium arsenide, electrons are typically localized at these low densities. In contrast, in transition-metal dichalcogenides (TMDs), Coulomb correlations in a 2DEG can be anticipated at experimentally relevant electron densities. Here, we investigate a 2DEG in a gated monolayer of the TMD molybdenum disulfide2. We measure the optical susceptibility, a probe of the 2DEG which is local, minimally invasive and spin selective3. In a magnetic field of 9.0 T and at electron concentrations up to n ≃ 5 × 1012 cm-2, we present evidence that the ground state is spin-polarized. Out of the four available conduction bands4,5, only two are occupied. These two bands have the same spin but different valley quantum numbers. Our results suggest that only two bands are occupied even in the absence of a magnetic field. The spin polarization increases with decreasing 2DEG density, suggesting that Coulomb interactions are a key aspect of the symmetry breaking. We propose that exchange couplings align the spins6. The Bohr radius is so small7 that even electrons located far apart in phase-space interact with each other6.

4.
Nano Lett ; 18(2): 1070-1074, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29378141

RESUMO

The optics of dangling-bond-free van der Waals heterostructures containing transition metal dichalcogenides are dominated by excitons. A crucial property of a confined exciton is the quantum confined Stark effect (QCSE). Here, such a heterostructure is used to probe the QCSE by applying a uniform vertical electric field across a molybdenum disulfide (MoS2) monolayer. The photoluminescence emission energies of the neutral and charged excitons shift quadratically with the applied electric field, provided that the electron density remains constant, demonstrating that the exciton can be polarized. Stark shifts corresponding to about half the homogeneous linewidth were achieved. Neutral and charged exciton polarizabilities of (7.8 ± 1.0) × 10-10 and (6.4 ± 0.9) × 10-10 D m V-1 at relatively low electron density (∼1012 cm-2) have been extracted, respectively. These values are one order of magnitude lower than the previously reported values but in line with theoretical calculations. The methodology presented here is versatile and can be applied to other semiconducting layered materials.

5.
Proc Math Phys Eng Sci ; 473(2206): 20170234, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29118658

RESUMO

Lubrication theory is broadly applicable to the flow characterization of thin fluid films and the motion of particles near surfaces. We offer an extension to lubrication theory by starting with Stokes equations and considering higher-order terms in a systematic perturbation expansion to describe the fluid flow in a channel with features of a modest aspect ratio. Experimental results qualitatively confirm the higher-order analytical solutions, while numerical results are in very good agreement with the higher-order analytical results. We show that the extended lubrication theory is a robust tool for an accurate estimate of pressure drop in channels with shape changes on the order of the channel height, accounting for both smooth and sharp changes in geometry.

6.
Nano Lett ; 17(4): 2381-2388, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28199122

RESUMO

We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe2. Raman intensities are computed entirely from first-principles by calculating finite differences of the dielectric susceptibility. In our analysis, we investigate the role of quantum interference effects and the electron-phonon coupling. With this method, we explain the experimentally observed intensity inversion of the A1' vibrational modes in triple-layer MoTe2 with increasing laser photon energy. Finally, we show that a quantitative comparison with experimental data requires the proper inclusion of excitonic effects.

7.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27869338

RESUMO

Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is observed for a record junction area of up to 100 µm2 containing millions of metal islands. Such graphene-metal nanocluster hybrid materials offer new prospects for single-electron electronics.

8.
ACS Nano ; 10(2): 2752-60, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26820232

RESUMO

We investigate the interlayer phonon modes in N-layer rhenium diselenide (ReSe2) and rhenium disulfide (ReS2) by means of ultralow-frequency micro-Raman spectroscopy. These transition metal dichalcogenides exhibit a stable distorted octahedral (1T') phase with significant in-plane anisotropy, leading to sizable splitting of the (in-plane) layer shear modes. The fan-diagrams associated with the measured frequencies of the interlayer shear modes and the (out-of-plane) interlayer breathing modes are perfectly described by a finite linear chain model and allow the determination of the interlayer force constants. Nearly identical values are found for ReSe2 and ReS2. The latter are appreciably smaller than but on the same order of magnitude as the interlayer force constants reported in graphite and in trigonal prismatic (2Hc) transition metal dichalcogenides (such as MoS2, MoSe2, MoTe2, WS2, WSe2), demonstrating the importance of van der Waals interactions in N-layer ReSe2 and ReS2. In-plane anisotropy results in a complex angular dependence of the intensity of all Raman modes, which can be empirically utilized to determine the crystal orientation. However, we also demonstrate that the angular dependence of the Raman response drastically depends on the incoming photon energy, shedding light on the importance of resonant exciton-phonon coupling in ReSe2 and ReS2.

9.
Nano Lett ; 15(10): 6481-9, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26371970

RESUMO

N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N-layer 2H-molybdenum ditelluride (MoTe2). We observe series of N-dependent low-frequency interlayer shear and breathing modes (below 40 cm(-1), denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100-200 cm(-1), denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200-300 cm(-1), denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals.

10.
Nano Lett ; 15(2): 1252-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25607231

RESUMO

The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

11.
Soft Matter ; 10(27): 4789-94, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24905688

RESUMO

Elastic instabilities, when properly implemented within soft, mechanical structures, can generate advanced functionality. In this work, we use the voltage-induced buckling of thin, flexible plates to pump fluids within a microfluidic channel. The soft electrodes that enable electrical actuation are compatible with fluids, and undergo large, reversible deformations. We quantified the onset of voltage-induced buckling, and measured the flow rate within the microchannel. This embeddable, flexible microfluidic pump will aid in the generation of new stand-alone microfluidic devices that require a tunable flow rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...