Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 628(8009): 765-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658685

RESUMO

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
Nat Energy ; 9(2): 172-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419691

RESUMO

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.

4.
Adv Mater ; 35(46): e2305549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735999

RESUMO

In recent years, halide perovskite materials have been used to make high-performance solar cells and light-emitting devices. However, material defects still limit device performance and stability. Here, synchrotron-based Bragg coherent diffraction imaging is used to visualize nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. Significant strain heterogeneity within MAPbBr3 (MA = CH3 NH3 + ) crystals is found in spite of their high optoelectronic quality, and both 〈100〉 and 〈110〉 edge dislocations are identified through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, dramatic light-induced dislocation migration across hundreds of nanometers is uncovered. Further, by selectively studying crystals that are damaged by the X-ray beam, large dislocation densities and increased nanoscale strains are correlated with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. These results demonstrate the dynamic nature of extended defects and strain in halide perovskites, which will have important consequences for device performance and operational stability.

5.
RSC Adv ; 13(31): 21138-21145, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449029

RESUMO

With a remarkable tolerance to high-energetic radiation and potential high power-to-weight ratios, halide perovskite-based solar cells are interesting for future space PV applications. In this work, we fabricate and test methylammonium-free, co-evaporated FA0.7Cs0.3Pb(I0.9Br0.1)3 perovskite solar cells that could potentially be fabricated in space or on the Moon by physical vapor deposition, making use of the available vacuum present. The absence of methylammonium hereby increased the UV-light stability significantly, an important factor considering the increased UV proportion in the extra-terrestrial solar spectrum. We then tested their radiation tolerance under high energetic proton irradiation and found that the PCE degraded to 0.79 of its initial value due to coloring of the glass substrate, a typical problem that often complicates analysis. To disentangle damage mechanisms and to assess whether the perovskite degraded, we employ injection-current-dependent electroluminescence (EL) and intensity-dependent VOC measurements to derive pseudo-JV curves that are independent of parasitic effects. This way we identify a high radiation tolerance with 0.96 of the initial PCE remaining after 1 × 1013 p+ cm-2 which is beyond today's space material systems (<0.8) and on par with those of previously tested solution-processed perovskite solar cells. Together our results render co-evaporated perovskites as highly interesting candidates for future space manufacturing, while the pseudo-JV methodology presents an important tool to disentangle parasitic effects.

6.
ACS Energy Lett ; 8(6): 2728-2737, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324541

RESUMO

All-perovskite tandem solar cells beckon as lower cost alternatives to conventional single-junction cells. Solution processing has enabled rapid optimization of perovskite solar technologies, but new deposition routes will enable modularity and scalability, facilitating technology adoption. Here, we utilize 4-source vacuum deposition to deposit FA0.7Cs0.3Pb(IxBr1-x)3 perovskite, where the bandgap is changed through fine control over the halide content. We show how using MeO-2PACz as a hole-transporting material and passivating the perovskite with ethylenediammonium diiodide reduces nonradiative losses, resulting in efficiencies of 17.8% in solar cells based on vacuum-deposited perovskites with a bandgap of 1.76 eV. By similarly passivating a narrow-bandgap FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite and combining it with a subcell of evaporated FA0.7Cs0.3Pb(I0.64Br0.36)3, we report a 2-terminal all-perovskite tandem solar cell with champion open circuit voltage and efficiency of 2.06 V and 24.1%, respectively. This dry deposition method enables high reproducibility, opening avenues for modular, scalable multijunction devices even in complex architectures.

7.
ACS Energy Lett ; 8(1): 250-258, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36660372

RESUMO

Band gap tunability of lead mixed halide perovskites makes them promising candidates for various applications in optoelectronics. Here we use the localization landscape theory to reveal that the static disorder due to iodide:bromide compositional alloying contributes at most 3 meV to the Urbach energy. Our modeling reveals that the reason for this small contribution is due to the small effective masses in perovskites, resulting in a natural length scale of around 20 nm for the "effective confining potential" for electrons and holes, with short-range potential fluctuations smoothed out. The increase in Urbach energy across the compositional range agrees well with our optical absorption measurements. We model systems of sizes up to 80 nm in three dimensions, allowing us to accurately reproduce the experimentally observed absorption spectra of perovskites with halide segregation. Our results suggest that we should look beyond static contribution and focus on the dynamic temperature dependent contribution to the Urbach energy.

8.
J Mater Chem C Mater ; 10(46): 17539-17549, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36561307

RESUMO

Scarce information is available on the thin film morphology of Dion-Jacobson halide perovskites. However, the microstructure can have a profound impact on a material's photophysics and its potential for optoelectronic applications. The microscopic mechanisms at play in the prototypical 1,4-phenylenedimethanammonium lead iodide (PDMAPbI4) Dion-Jacobson compound are here elucidated through a combination of hyperspectral photoluminescence and Raman spectro-microscopy supported by x-ray diffraction. In concert, these techniques allow for a detailed analysis of local composition and microstructure. PDMAPbI4 thin films are shown to be phase-pure and to form micron-sized crystallites with a dominant out-of-plane stacking and strong in-plane rotational disorder. Sample topography, localised defects, and a strong impact of temperature-variation create a complex and heterogeneous picture of the luminescence that cannot be captured by a simplified bulk-semiconductor picture. Our study highlights the power of optical microscopy techniques used in combination, and underlines the danger of conceptual oversimplification when analysing the photophysics of perovskite thin films.

9.
Nature ; 607(7918): 294-300, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609624

RESUMO

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

10.
Nano Lett ; 22(3): 979-988, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35061402

RESUMO

Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)-dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm-2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.

11.
Adv Mater ; 34(1): e2105942, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34658076

RESUMO

Halide perovskite materials offer an ideal playground for easily tuning their color and, accordingly, the spectral range of their emitted light. In contrast to common procedures, this work demonstrates that halide substitution in Ruddlesden-Popper perovskites not only progressively modulates the bandgap, but it can also be a powerful tool to control the nanoscale phase segregation-by adjusting the halide ratio and therefore the spatial distribution of recombination centers. As a result, thin films of chloride-rich perovskite are engineered-which appear transparent to the human eye-with controlled tunable emission in the green. This is due to a rational halide substitution with iodide or bromide leading to a spatial distribution of phases where the minor component is responsible for the tunable emission, as identified by combined hyperspectral photoluminescence imaging and elemental mapping. This work paves the way for the next generation of highly tunable transparent emissive materials, which can be used as light-emitting pixels in advanced and low-cost optoelectronics.

12.
Nat Nanotechnol ; 17(2): 190-196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811554

RESUMO

Halide perovskites perform remarkably in optoelectronic devices. However, this exceptional performance is striking given that perovskites exhibit deep charge-carrier traps and spatial compositional and structural heterogeneity, all of which should be detrimental to performance. Here, we resolve this long-standing paradox by providing a global visualization of the nanoscale chemical, structural and optoelectronic landscape in halide perovskite devices, made possible through the development of a new suite of correlative, multimodal microscopy measurements combining quantitative optical spectroscopic techniques and synchrotron nanoprobe measurements. We show that compositional disorder dominates the optoelectronic response over a weaker influence of nanoscale strain variations even of large magnitude. Nanoscale compositional gradients drive carrier funnelling onto local regions associated with low electronic disorder, drawing carrier recombination away from trap clusters associated with electronic disorder and leading to high local photoluminescence quantum efficiency. These measurements reveal a global picture of the competitive nanoscale landscape, which endows enhanced defect tolerance in devices through spatial chemical disorder that outcompetes both electronic and structural disorder.

13.
Science ; 374(6575): 1598-1605, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941391

RESUMO

Efforts to stabilize photoactive formamidinium (FA)­based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors.

14.
ACS Energy Lett ; 6(6): 2293-2304, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34307879

RESUMO

Halide perovskite/crystalline silicon (c-Si) tandem solar cells promise power conversion efficiencies beyond the limits of single-junction cells. However, the local light-matter interactions of the perovskite material embedded in this pyramidal multijunction configuration, and the effect on device performance, are not well understood. Here, we characterize the microscale optoelectronic properties of the perovskite semiconductor deposited on different c-Si texturing schemes. We find a strong spatial and spectral dependence of the photoluminescence (PL) on the geometrical surface constructs, which dominates the underlying grain-to-grain PL variation found in halide perovskite films. The PL response is dependent upon the texturing design, with larger pyramids inducing distinct PL spectra for valleys and pyramids, an effect which is mitigated with small pyramids. Further, optimized quasi-Fermi level splittings and PL quantum efficiencies occur when the c-Si large pyramids have had a secondary smoothing etch. Our results suggest that a holistic optimization of the texturing is required to maximize light in- and out-coupling of both absorber layers and there is a fine balance between the optimal geometrical configuration and optoelectronic performance that will guide future device designs.

15.
ACS Energy Lett ; 6(2): 612-620, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614966

RESUMO

Perovskite-based tandem solar cells are of increasing interest as they approach commercialization. Here we use experimental parameters from optical spectroscopy measurements to calculate the limiting efficiency of perovskite-silicon and all-perovskite two-terminal tandems, employing currently available bandgap materials, as 42.0% and 40.8%, respectively. We show luminescence coupling between subcells (the optical transfer of photons from the high-bandgap to low-bandgap subcell) relaxes current matching when the high-bandgap subcell is a luminescent perovskite. We calculate that luminescence coupling becomes important at charge trapping rates (≤106 s-1) already being achieved in relevant halide perovskites. Luminescence coupling increases flexibility in subcell thicknesses and tolerance to different spectral conditions. For maximal benefit, the high-bandgap subcell should have the higher short-circuit current under average spectral conditions. This can be achieved by reducing the bandgap of the high-bandgap subcell, allowing wider, unstable bandgap compositions to be avoided. Lastly, we visualize luminescence coupling in an all-perovskite tandem through cross-section luminescence imaging.

16.
Energy Environ Sci ; 14(12): 6320-6328, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35003331

RESUMO

With rapidly growing photoconversion efficiencies, hybrid perovskite solar cells have emerged as promising contenders for next generation, low-cost photovoltaic technologies. Yet, the presence of nanoscale defect clusters, that form during the fabrication process, remains critical to overall device operation, including efficiency and long-term stability. To successfully deploy hybrid perovskites, we must understand the nature of the different types of defects, assess their potentially varied roles in device performance, and understand how they respond to passivation strategies. Here, by correlating photoemission and synchrotron-based scanning probe X-ray microscopies, we unveil three different types of defect clusters in state-of-the-art triple cation mixed halide perovskite thin films. Incorporating ultrafast time-resolution into our photoemission measurements, we show that defect clusters originating at grain boundaries are the most detrimental for photocarrier trapping, while lead iodide defect clusters are relatively benign. Hexagonal polytype defect clusters are only mildly detrimental individually, but can have a significant impact overall if abundant in occurrence. We also show that passivating defects with oxygen in the presence of light, a previously used approach to improve efficiency, has a varied impact on the different types of defects. Even with just mild oxygen treatment, the grain boundary defects are completely healed, while the lead iodide defects begin to show signs of chemical alteration. Our findings highlight the need for multi-pronged strategies tailored to selectively address the detrimental impact of the different defect types in hybrid perovskite solar cells.

17.
Phys Chem Chem Phys ; 22(45): 26592-26604, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33201960

RESUMO

Inorganic-organic hybrid perovskite materials have been a topic of interest for the last few years due to their superior optoelectronic properties. However, the optical properties of perovskite materials are strongly dependent on the film morphology. A textured film morphology is expected to have higher light absorption as well as light out-coupling efficiency compared to a smooth film. There have been numerous methods for controlling and optimizing the film morphology to achieve high efficiency in solar cells and light emitting diodes. Here we have demonstrated that controlled anti-solvent treatment at low temperature can lead to Stranski-Krastanov growth in CH3NH3PbBr3 thin films with superior optical and electronic properties for light emitting diode applications. We have studied their photoluminescence properties at the micro- to nano-scale via fluorescence microscopy, hyper-spectral imaging and scanning near-field optical microscopy. We have demonstrated that the nanostructured micro-islands are highly emissive because of large quasi-Fermi level splitting (QFLS) due to the localization of free charges in the smaller crystals. We have shown that the photoluminescence as well as electroluminescence can be improved by at least seven-fold due to the presence of micro-islands on a smooth background film enhancing light out-coupling. Photo-induced photoluminescence enhancement is also observed in smooth films while micro-islands show photo-degradation.

18.
ACS Energy Lett ; 5(6): 1900-1907, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32566752

RESUMO

Quantum-confined CsPbBr3 nanoplatelets (NPLs) are extremely promising for use in low-cost blue light-emitting diodes, but their tendency to coalesce in both solution and film form, particularly under operating device conditions with injected charge-carriers, is hindering their adoption. We show that employing a short hexyl-phosphonate ligand (C6H15O3P) in a heat-up colloidal approach for pure, blue-emitting quantum-confined CsPbBr3 NPLs significantly suppresses these coalescence phenomena compared to particles capped with the typical oleyammonium ligands. The phosphonate-passivated NPL thin films exhibit photoluminescence quantum yields of ∼40% at 450 nm with exceptional ambient and thermal stability. The color purity is preserved even under continuous photoexcitation of carriers equivalent to LED current densities of ∼3.5 A/cm2. 13C, 133Cs, and 31P solid-state MAS NMR reveal the presence of phosphonate on the surface. Density functional theory calculations suggest that the enhanced stability is due to the stronger binding affinity of the phosphonate ligand compared to the ammonium ligand.

19.
Joule ; 4(5): 1054-1069, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32467877

RESUMO

Monolithic [Cs0.05(MA0. 17FA0. 83)0.95]Pb(I0.83Br0.17)3/Cu(In,Ga)Se2 (perovskite/CIGS) tandem solar cells promise high performance and can be processed on flexible substrates, enabling cost-efficient and ultra-lightweight space photovoltaics with power-to-weight and power-to-cost ratios surpassing those of state-of-the-art III-V semiconductor-based multijunctions. However, to become a viable space technology, the full tandem stack must withstand the harsh radiation environments in space. Here, we design tailored operando and ex situ measurements to show that perovskite/CIGS cells retain over 85% of their initial efficiency even after 68 MeV proton irradiation at a dose of 2 × 1012 p+/cm2. We use photoluminescence microscopy to show that the local quasi-Fermi-level splitting of the perovskite top cell is unaffected. We identify that the efficiency losses arise primarily from increased recombination in the CIGS bottom cell and the nickel-oxide-based recombination contact. These results are corroborated by measurements of monolithic perovskite/silicon-heterojunction cells, which severely degrade to 1% of their initial efficiency due to radiation-induced recombination centers in silicon.

20.
Nanoscale ; 12(7): 4498-4505, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32031192

RESUMO

While extensively investigated in thin film form for energy materials applications, this work investigates the formation of APbBr3 structures (A = CH3NH3+ (MA), Cs+) in silicon and oxidized silicon nanotubes (SiNTs) with varying inner diameter. We carefully control the extent of oxidation of the nanotube host and correlate the relative Si/Si oxide content in a given nanotube host with the photoluminescence quantum efficiency (PLQE) of the perovskite. Complementing these measurements is an evaluation of average PL lifetimes of a given APbBr3 nanostructure, as evaluated by time-resolved confocal photoluminescence measurements. Increasing Si (decreasing oxide) content in the nanotube host results in a sensitive reduction of MAPbBr3 PLQE, with a concomitant decrease in average lifetime (τave). We interpret these observations in terms of decreased defect passivation by a lower concentration of oxide species surrounding the perovskite. In addition, we show that the use of selected nanotube templates leads to more stable perovskite PL in air over time (weeks). Taken in concert, such fundamental observations have implications for interfacial carrier interactions in tandem Si/perovskite photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...