Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447614

RESUMO

Controlled regeneration processes involving tissue growth using the surface and structure of scaffolds, are actively used in tissue engineering. Reactive magnetron sputtering is a versatile surface modification method of both metal and polymer substrates, as the properties of the formed coatings can be modified in a wide range by changing the process parameters. In magnetron sputtering, the working gas and its composition have an influence on the chemical composition and physical characteristics of the obtained coatings. However, there are no studies addressing the influence of the nitrogen/xenon gas mixture ratio in direct current magnetron sputtering on the deposition rate, physicochemical and in vitro properties of surface-modified biocompatible poly-L-lactic acid scaffolds. In this study, the application of mixtures of nitrogen and xenon in various ratios is demonstrated to modify the surface of non-woven poly-L-lactic acid scaffolds by direct current magnetron sputtering of a titanium target. It has been found that the magnetron sputtering parameters chosen do not negatively influence the morphology of the prepared scaffolds, but increase the hydrophilicity. Moreover, quantitative spectroscopic analysis results indicate that the formed coatings are primarily composed of titanium oxide and titanium oxynitride compounds and is dependent on the gas mixture ratio only to a certain extent. Atomic force microscopy investigations of the roughness of the fibers of the electrospun scaffolds and the thickness of the coatings formed on them show that the considerable variations observed in the intrinsic fiber reliefs are due to the formation of a fine layer on the fiber surfaces. The observed decrease in roughness after plasma modification is due to temperature and radiation effects of the plasma. In vitro experiments with human osteosarcoma cells show that the scaffolds investigated here have no cytotoxic effect on these cells. The cells adhere and proliferate well on each of the surface-modified electrospun scaffolds, with stimulation of cell differentiation in the osteogenic direction.

2.
Biochim Biophys Acta Gen Subj ; 1867(6): 130348, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977439

RESUMO

Cytotoxicity assays are essential tests in studies on the safety and biocompatibility of various substances and on the efficiency of anticancer drugs. The most frequently used assays commonly require application of externally added labels and read only collective response of cells. Recent studies show that the internal biophysical parameters of cells can be associated with the cellular damage. Therefore, using atomic force microscopy, we assessed the changes in the viscoelastic parameters of cells treated with eight different common cytotoxic agents to gain a more systematic view of the occurring mechanical changes. With the robust statistical analysis to account for both the cell-level variability and the experimental reproducibility, we have found that cell softening is a common response after each treatment. More precisely, the combined changes in the viscoelastic parameters of power-law rheology model led to a significant decrease of the apparent elastic modulus. The comparison with the morphological parameters (cytoskeleton and cell shape) demonstrated a higher sensitivity of the mechanical parameters versus the morphological ones. The obtained results support the idea of cell mechanics-based cytotoxicity tests and suggest a common way of a cell responding to damaging actions by softening.


Assuntos
Antineoplásicos , Citoesqueleto , Reprodutibilidade dos Testes , Módulo de Elasticidade , Citoesqueleto/fisiologia , Microscopia de Força Atômica/métodos
3.
Pharmaceutics ; 14(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631534

RESUMO

One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. MATERIALS AND METHODS: The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. RESULTS: This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). CONCLUSIONS: The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.

4.
Diagnostics (Basel) ; 12(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35204496

RESUMO

Increasingly, many researchers are focusing on the sensitivity in breast tumors (BC) to certain chemotherapy drugs and have personalized their research based on the assessment of this sensitivity. One such personalized approach is to assess the chemotherapy's gene expression, as well as aberrations in the number of DNA copies-deletions and amplifications with the ability to have a significant effect on the gene's activity. Thus, the aim of this work was to study the predictive and prognostic significance of the expression and chromosomal aberrations of eight chemosensitivity genes in breast cancer patients. MATERIAL AND METHODS: The study involved 97 patients with luminal B breast cancer IIB-IIIB stages. DNA and RNA were isolated from samples of tumor tissue before and after treatment. Microarray analysis was performed for all samples on high-density microarrays (DNA chips) of Affymetrix (USA) CytoScanTM HD Array and Clariom™ S Assay, human. Detection of expression level of seven chemosensitivity genes-RRM1, ERCC1, TOP1, TOP2a, TUBB3, TYMS, and GSTP1-was performed using PCR real-time (RT-qPCR). RESULTS: The expression of the RRM1 (AC scheme), TOP2α, TYMS, and TUBB3 genes in patients with an objective response to treatment (complete and partial regression) is higher than in patients with stabilization and progression (p < 0.05). According to our results, the presence of a high level of GSTP1 in a tumor biopsy is associated with the low efficiency of the NAC CP scheme (p = 0.05). The presence of RRM1 deletion is associated with complete and partial regression, as for the TOP1 and TUBB3 genes (p < 0.05). Higher rates of metastatic survival are associated with a high level of expression and amplification of the GSTP1 gene (log-rank test p = 0.02 and p = 0.05). CONCLUSION: Thus, a complex assessment of the chemotherapy's gene expression is important not only for understanding the heterogeneity and molecular biology of breast cancer but also to obtain a more accurate disease prognosis.

5.
ACS Omega ; 6(23): 15264-15273, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151105

RESUMO

The interaction of neural progenitor cells (NPCs) with the extracellular matrix (ECM) plays an important role in neural tissue regeneration. Understanding which motifs of the ECM proteins are crucial for normal NPC adhesion, proliferation, and differentiation is important in order to create more adequate tissue engineered models of neural tissue and to efficiently study the central nervous system regeneration mechanisms. We have shown earlier that anisotropic matrices prepared from a mixture of recombinant dragline silk proteins, such as spidroin 1 and spidroin 2, by electrospinning are biocompatible with NPCs and provide good proliferation and oriented growth of neurites. This study objective was to find the effects of spidroin-based electrospun materials, modified with peptide motifs of the extracellular matrix proteins (RGD, IKVAV, and VAEIDGIEL) on adhesion, proliferation, and differentiation of directly reprogrammed neural precursor cells (drNPCs). The structural and biomechanical studies have shown that spidroin-based electrospun mats (SBEM), modified with ECM peptides, are characterized by a uniaxial orientation and elastic moduli in the swollen state, comparable to those of the dura mater. It has been found for the first time that drNPCs on SBEM mostly preserve their stemness in the growth medium and even in the differentiation medium with brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, while addition of the mentioned ECM-peptide motifs may shift the balance toward neuroglial differentiation. We have demonstrated that the RGD motif promotes formation of a lower number of neurons with longer neurites, while the IKVAV motif is characterized by formation of a greater number of NF200-positive neurons with shorter neurites. At the same time, all the studied matrices preserve up to 30% of neuroglial progenitor cells, phenotypically similar to radial glia derived from the subventricular zone. We believe that, by using this approach and modifying spidroin by various ECM-motifs or other substances, one may create an in vitro model for the neuroglial stem cell niche with the potential control of their differentiation.

6.
J Mech Behav Biomed Mater ; 112: 104081, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961392

RESUMO

The purpose of this study is the mechanical characterization of the mid-to- old-age human anterior lens capsules (ALCs) obtained by capsulorhexis using Atomic Force Microscopy (AFM) and a nanoindenter at different spatial scales. The dependencies on the human age, presence or absence of pseudoexfoliation syndrome (PEX), and application of trypan blue staining during the surgery were analyzed. The measurements on both the anterior (AS) and epithelial (ES) sides of the ALC were conducted and the effect of cells present on the epithelial side was carefully accounted for. The ES of the ALC had a homogenous distribution of the Young's modulus over the surface as shown by the macroscale mapping with the nanoindenter and local AFM indentations, while the AS was more heterogeneous. Age-related changes were assessed in groups ranging from the mid-age (from 48 years) to old-age (up to 93 years). We found that the ES was always stiffer than the AS, and this difference decreased with age due to a gradual decrease in the Young's modulus of the ES and an increase in the modulus of the AS. No significant changes were found in the mechanical properties of ALCs of PEX patients versus the PEX-free group, as well as in the properties of the ALC with and without trypan blue staining.


Assuntos
Síndrome de Exfoliação , Cápsula do Cristalino , Envelhecimento , Corantes , Humanos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Coloração e Rotulagem , Azul Tripano
7.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867356

RESUMO

One of the leading trends in the modern tissue engineering is the development of new effective methods of decellularization aimed at the removal of cellular components from a donor tissue, reducing its immunogenicity and the risk of rejection. Supercritical CO2 (scCO2)-assisted processing has been proposed to improve the outcome of decellularization, reduce contamination and time costs. The resulting products can serve as personalized tools for tissue-engineering therapy of various somatic pathologies. However, the decellularization of heterogeneous 3D structures, such as the aortic root, requires optimization of the parameters, including preconditioning medium composition, the type of co-solvent, values of pressure and temperature inside the scCO2 reactor, etc. In our work, using an ovine aortic root model, we performed a comparative analysis of the effectiveness of decellularization approaches based on various combinations of these parameters. The protocols were based on the combinations of treatments in alkaline, ethanol or detergent solutions with scCO2-assisted processing at different modes. Histological analysis demonstrated favorable effects of the preconditioning in a detergent solution. Following processing in scCO2 medium provided a high decellularization degree, reduced cytotoxicity, and increased ultimate tensile strength and Young's modulus of the aortic valve leaflets, while the integrity of the extracellular matrix was preserved.


Assuntos
Valva Aórtica/ultraestrutura , Estruturas Celulares , Engenharia Tecidual/métodos , Animais , Dióxido de Carbono , Células Cultivadas , Módulo de Elasticidade , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais , Ovinos , Resistência à Tração
8.
J Microsc ; 274(1): 55-68, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30740689

RESUMO

Regenerative medicine opens new opportunities in the repair of cicatricial lesions of the vocal folds. Here, we present a thorough morphological study, with the focus on the collagen structures in the mucosa of the vocal folds, dedicated to the effects of stem cells on the vocal folds repair after cicatricial lesions. We used a conventional experimental model of a mature scar of the rabbit vocal folds, which was surgically excised with a simultaneous implantation of autologous bone marrow-derived mesenchymal stem cells (MSC) into the defect. The restoration of the vocal folds was studied 3 months postimplantation of stem cells and 6 months after the first surgery. The collagen structure assessment included histology, immunohistochemistry and atomic force microscopy (AFM) studies. According to the data of optical microscopy and AFM, as well as to immunohistochemical analysis, MSC implantation into the vocal fold defect leads not only to the general reduction of scarring, normal ratio of collagens type I and type III, but also to a more complete restoration of architecture and ultrastructure of collagen fibres in the mucosa, as compared to the control. The collagen structures in the scar tissue in the vocal folds with implanted MSC are more similar to those in the normal mucosa of the vocal folds than to those of the untreated scars. AFM has proven to be an instrumental technique in the assessment of the ultrastructure restoration in such studies. LAY DESCRIPTION: Regenerative medicine opens new opportunities in the repair of the vocal fold scars. Because collagen is a main component in the vocal fold mucosa responsible for the scar formation and repair, we focus on the collagen structures in the mucosa of the vocal folds, using a thorough morphological study based on histology and atomic force microscopy (AFM). Atomic force microscopy is a scanning microscopic technique which allows revealing the internal structure of a tissue with a resolution up to nanometres. We used a conventional experimental model of a mature scar of the rabbit vocal folds, surgically excised and treated with a mesenchymal stem cells transplant. Our morphological study, primarily AFM, explicitly shows that the collagen structures in the scarred vocal folds almost completely restore after the stem cell treatment. Thus, the modern microscopic methods, and especially AFM are instrumental tools for monitoring the repair of the vocal folds scars.


Assuntos
Colágenos Fibrilares , Transplante de Células-Tronco Mesenquimais , Prega Vocal , Animais , Cicatriz , Modelos Animais de Doenças , Matriz Extracelular/química , Colágenos Fibrilares/química , Colágenos Fibrilares/ultraestrutura , Imuno-Histoquímica , Células-Tronco Mesenquimais , Microscopia de Força Atômica , Coelhos , Prega Vocal/química , Prega Vocal/lesões , Prega Vocal/patologia
9.
Front Microbiol ; 8: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194142

RESUMO

Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA