Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 10(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260384

RESUMO

Intestinal microbiota play a considerable role in the host's organism, broadly affecting its organs and tissues. The kidney can also be the target of the microbiome and its metabolites (especially short-chain fatty acids), which can influence renal tissue, both by direct action and through modulation of the immune response. This impact is crucial, especially during kidney injury, because the modulation of inflammation or reparative processes could affect the severity of the resulting damage or recovery of kidney function. In this study, we compared the composition of rat gut microbiota with its outcome, in experimental acute ischemic kidney injury and named the bacterial taxa that play putatively negative or positive roles in the progression of ischemic kidney injury. We investigated the link between serum creatinine, urea, and a number of metabolites (acylcarnitines and amino acids), and the relative abundance of various bacterial taxa in rat feces. Our analysis revealed an increase in levels of 32 acylcarnitines in serum, after renal ischemia/reperfusion and correlation with creatinine and urea, while levels of three amino acids (tyrosine, tryptophan, and proline) had decreased. We detected associations between bacterial abundance and metabolite levels, using a compositionality-aware approach-Rothia and Staphylococcus levels were positively associated with creatinine and urea levels, respectively. Our findings indicate that the gut microbial community contains specific members whose presence might ameliorate or, on the contrary, aggravate ischemic kidney injury. These bacterial taxa could present perspective targets for therapeutical interventions in kidney pathologies, including acute kidney injury.

2.
Alcohol ; 83: 17-28, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31260795

RESUMO

Chronic ethanol consumption in high doses is associated with constitutively elevated activity of the serum alcohol dehydrogenase I (ADH I) isoform, which demonstrates a high affinity not only for ethanol but also for a number of bioamine metabolites. Such excessive ADH activity is probably associated with disruptions in the metabolism of neurotransmitters (dopamine, serotonin, and norepinephrine) and subsequent long-term changes in the activity of their receptors. Ultimately, a stable depressive-like condition contributes to the development of patients' craving for ethanol intake, frequent disruptions during therapy, and low efficacy of treatment. We applied active immunization against ADH to investigate its efficacy in the reduction of excessive serum ADH activity and regulation of ethanol consumption by chronically ethanol-fed Wistar rats (15% ethanol, 4 months, free-choice method), and we analyzed its ability to influence the levels of bioamines in the brain. Immunization (2 injections, 2-week intervals) was performed using a combination of recombinant horse ADH isozyme as an antigen and 2% aluminum hydroxide-based adjuvant. The efficacy of immunization was demonstrated by the production of high titers of ADH-specific antibodies, which was consistent with the significantly reduced ADH activity in the serum of chronically ethanol-fed rats. On the 26th day after the first vaccine injection, we registered significantly lower levels of alcohol consumption compared to ethanol-fed control animals, and the difference reached 16% on the 49th day of the experiment. These observations were accompanied by data that showed reduced levels of ethanol preference in immunized rats. Chronic alcohol drinking led to a decrease in dopamine and DOPAL (a direct dopamine metabolite and a high-affinity ADH substrate) levels in the striatum,while immunization neutralized this effect. Additionally, we observed that inhibition of serum ADH activity caused a decrease in peak dopamine levels during acute alcohol intake in chronically ethanol-fed rats during ethanol withdrawal that was associated with reduced tyrosine hydroxylase activity in the striatum. The obtained data suggest a significant contribution of ADH to the changes in neurotransmitter systems during chronic alcohol consumption and make available new prospects for developing innovative strategies for treatment of excessive alcohol intake.


Assuntos
Álcool Desidrogenase/sangue , Álcool Desidrogenase/imunologia , Alcoolismo/enzimologia , Vacinação , Álcool Desidrogenase/metabolismo , Consumo de Bebidas Alcoólicas/prevenção & controle , Alcoolismo/terapia , Animais , Anticorpos/sangue , Dopamina/sangue , Etanol/administração & dosagem , Etanol/sangue , Neurotransmissores/metabolismo , Ratos , Ratos Wistar
3.
Physiol Behav ; 179: 458-466, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28735060

RESUMO

Alcohol dehydrogenases (ADH) are key enzymes of ethanol metabolism that mediate its oxidation to acetaldehyde. ADHs are also able to oxidize some types of neurotransmitters such as dopamine, serotonin and norepinephrine. Increased level of ADHs activity, induced by chronic alcohol consumption, is presumably associated with disturbed neurotransmitters metabolism that leads to stable alcohol craving. As earlier reported, intraperitoneal administration of 4-methilpirasole (non-specific inhibitor of ADHs) has shown to provide a short-term anti-alcoholic effect, but individual roles of ADH isoforms in this process were still unclear. The aim of this work was to study the roles of brain and serum ADH isoforms in alcohol consumption and neurotransmitter metabolism in the rats. In the study we used specific-pathogen-free (SPF) Wistar rats chronically alcoholized with 15% ethanol. 4-methilpirasole intranasal administration in small doses led to local inhibition of ADH III activity in the brain estimated by spectrophotometric assay. It correlated with dose-dependent reduction of dopamine concentration and increased level of its metabolic products in the brain but did not influence alcohol consumption. These data allowed us to propose an important role of brain ADHs (predominantly ADH III) in metabolism of dopamine in chronically alcoholized rats but not in regulation of alcohol consumption. To evaluate the role of serum ADH isoforms we immunized the rats with recombinant horse ADH that led to production of high levels of cross-reactive anti-ADH antibodies verified by ELISA assay. Immunization led to 30% decrease in alcohol consumption and recovery of general behavioral parameters such as motor activity, anxiety and depression level. At the same time active immunization did not cause any impairments in animal blood composition. We can conclude that immunization against ADHs appeared to be a safe way to decrease alcohol consumption that could be possibly associated with neurotransmitters metabolism correction.


Assuntos
Álcool Desidrogenase/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Encéfalo/enzimologia , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/imunologia , Consumo de Bebidas Alcoólicas/imunologia , Consumo de Bebidas Alcoólicas/terapia , Animais , Anticorpos/metabolismo , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Fomepizol , Cavalos , Isoenzimas/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pirazóis/farmacologia , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Organismos Livres de Patógenos Específicos , Estupor/induzido quimicamente , Vacinação
4.
PLoS One ; 7(4): e36122, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563443

RESUMO

Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain.We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.


Assuntos
Metanol/metabolismo , Transdução de Sinais , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Encéfalo/metabolismo , Brassica rapa/enzimologia , Brassica rapa/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Regulação para Baixo , Formaldeído/metabolismo , Formiatos/metabolismo , Biblioteca Gênica , Células HeLa , Humanos , Leucócitos/metabolismo , Camundongos , Hibridização de Ácido Nucleico , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
5.
PLoS Pathog ; 8(4): e1002640, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496658

RESUMO

Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring "receiver" plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of "receiver" plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: ß-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the "receivers". Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.


Assuntos
Metanol/metabolismo , Nicotiana/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Metanol/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/metabolismo , Plasmodesmos/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
6.
PLoS One ; 6(3): e17541, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21390232

RESUMO

BACKGROUND: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb), trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i) binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii) testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT) bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE: We conclude that PMT is active in suppression of cell proliferation and tumor growth.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/patologia , Nicotiana/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Feminino , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias Ovarianas/patologia , Peptídeos/imunologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Plant Mol Biol ; 74(6): 591-603, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20953971

RESUMO

The synthesis and subsequent nuclear export of non-coding RNA (ncRNA) directed by RNA polymerase (Pol) II is very sensitive to abiotic and biotic external stimuli including pathogen challenges. To assess whether stress-induced ncRNAs may suppress the nuclear export of mRNA, we exploited the ability of Agrobacterium tumefaciens to co-deliver Pol I, II and III promoter-based vectors for the transcription of short (s) ncRNAs, GFP mRNA or genomic RNA of plant viruses (Tobacco mosaic virus, TMV; or Potato virus X, PVX) into the nucleus of Nicotiana benthamiana cells. We showed that, in contrast to Pol I- and Pol III-derived sncRNAs, all tested Pol II-derived sncRNAs (U6 RNA, tRNA or artificial RNAs) resulted in decreased expression of GFP and host mRNA. The level of this inhibitory effect depended on the non-coding transcript length and promoter strength. Short coding RNA (scRNA) can also compete with mRNA for nuclear export. We showed that scRNA, an artificial 117-nt short sequence encoding Elastin-Like peptide element tandems with FLAG sequence (ELF) and the 318-nt N. benthamiana antimicrobial peptide thionin (defensin) gene efficiently decreased GFP expression. The stress-induced export of Pol II-derived sncRNA and scRNA into the cytoplasm via the mRNA export pathway may block nucleocytoplasmic traffic including the export of mRNA responsible for antivirus protection. Consistent with this model, we observed that Pol II-derived sncRNAs as well as scRNA, thionin and ELF strongly enhanced the cytoplasmic reproduction of TMV and PVX RNA.


Assuntos
Núcleo Celular/metabolismo , Nicotiana/genética , RNA Polimerase II/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transporte Ativo do Núcleo Celular , Transporte Biológico , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/análise , Potexvirus/genética , RNA Interferente Pequeno/análise , Pequeno RNA não Traduzido/análise , Pequeno RNA não Traduzido/fisiologia , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/genética
8.
Virology ; 407(1): 7-13, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20801474

RESUMO

Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.


Assuntos
Anticorpos Monoclonais/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Anticorpos Monoclonais Humanizados , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Trastuzumab
9.
PLoS One ; 3(6): e2352, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18523638

RESUMO

Agrobacterium tumefaciens is the main plant biotechnology gene transfer tool with host range which can be extended to non-plant eukaryotic organisms under laboratory conditions. Known medical cases of Agrobacterium species isolation from bloodstream infections necessitate the assessment of biosafety-related risks of A. tumefaciens encounters with mammalian organisms. Here, we studied the survival of A. tumefaciens in bloodstream of mice injected with bacterial cultures. Bacterial titers of 10(8) CFU were detected in the blood of the injected animals up to two weeks after intravenous injection. Agrobacteria carrying Cauliflower mosaic virus (CaMV) 35S promoter-based constructs and isolated from the injected mice retained their capacity to promote green fluorescent protein (GFP) synthesis in Nicotiana benthamiana leaves. To examine whether or not the injected agrobacteria are able to express in mouse organs, we used an intron-containing GFP (GFPi) reporter driven either by a cytomegalovirus (CMV) promoter or by a CaMV 35S promoter. Western and northern blot analyses as well as RT-PCR analysis of liver, spleen and lung of mice injected with A. tumefaciens detected neither GFP protein nor its transcripts. Thus, bacteraemia induced in mice by A. tumefaciens does not lead to detectable levels of genetic transformation of mouse organs.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Bacteriemia/sangue , Genes Reporter , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Caulimovirus/genética , Citomegalovirus/genética , Primers do DNA , Expressão Gênica , Células HeLa , Humanos , Camundongos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Influenza Other Respir Viruses ; 2(2): 53-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19453472

RESUMO

A patch containing a trivalent inactivated influenza vaccine (TIV) was prepared in a dried, stabilized formulation for transcutaneous delivery. When used in a guinea pig immunogenicity model, the dry patch was as effective as a wet TIV patch in inducing serum anti-influenza IgG antibodies. When the dry TIV patch was administered with LT as an adjuvant, a robust immune response was obtained that was comparable with or better than an injected TIV vaccine. When stored sealed in a nitrogen-purged foil, the dry TIV patch was stable for 12 months, as measured by HA content, under both refrigerated and room temperature conditions. Moreover, the immunological potency of the vaccine product was not affected by long-term storage. The dry TIV patch was also thermostable against three cycles of alternating low-to-high temperatures of -20/25 and -20/40 degrees C, and under short-term temperature stress conditions. These studies indicate that the dry TIV patch product can tolerate unexpected environmental stresses that may be encountered during shipping and distribution. Because of its effectiveness in vaccine delivery and its superior thermostable characteristics, the dry TIV patch represents a major advance for needle-free influenza vaccination.


Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Administração Cutânea , Animais , Anticorpos Antivirais/sangue , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/farmacologia , Dessecação , Formas de Dosagem , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Enterotoxinas/administração & dosagem , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/farmacologia , Feminino , Cobaias , Imunoglobulina G/sangue , Vacinas de Produtos Inativados/imunologia
11.
Tuberculosis (Edinb) ; 87(3): 218-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17182283

RESUMO

Recent developments in genetic engineering allow the employment of plants as factories for 1/foreign protein production. Thus, tuberculosis (TB) ESAT6 antigen was expressed in different plant systems, but the level of vaccine protein accumulation was extremely low. We describe the technology for superexpression of TB vaccine proteins (Ag85B, ESAT6, and ESAT6:Ag85B fusion) in plant leaves which involves: (i) construction of tobacco mosaic virus-based vectors with the coat protein genes substituted by those for TB antigens; (ii) Agrobacterium-mediated delivery to plant leaf tissues of binary vectors containing the cDNA copy of the vector virus genome; and (iii) replication of virus vectors in plant cells under conditions suppressing the virus-induced gene silencing. This technology enables efficient production of the TB vaccine proteins in plants; in particular, the level of Ag85B antigen accumulation was not less than 800 mg/kg of fresh leaves. Expression of TB antigens in plant cells as His(6)-tagged proteins promoted their isolation and purification by Ni-NTA affinity chromatography. Deletion of transmembrane domains from Ag85B caused a dramatic increase in its intracellular stability. We propose that the strategy of TB antigens superproduction in a plant might be used as a basis for the creation of prophylactic and therapeutic vaccine against TB.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Mycobacterium tuberculosis/imunologia , Folhas de Planta/imunologia , Plantas Geneticamente Modificadas/imunologia , Agrobacterium tumefaciens , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Western Blotting , Cromatografia de Afinidade , Escherichia coli/imunologia , Vetores Genéticos , Plasmídeos , Nicotiana , Vírus do Mosaico do Tabaco/imunologia , Vacinas contra a Tuberculose/biossíntese
12.
J Immunol ; 177(2): 1197-207, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16818778

RESUMO

Intradermal (i.d.) immunization is a promising route of vaccine administration. Suitable i.d. adjuvants are important to increase vaccine efficacy in poorly responding populations such as the elderly or for dose-sparing strategies in the face of vaccine shortages. Bacterial exotoxins, such as Escherichia coli heat-labile enterotoxin (LT), exert strong immunostimulatory effects through binding to monosialoganglioside (GM1) cell surface receptors; however, injection is hampered by local inflammation. We demonstrate that the injection of LT formulations deficient in GM1 binding by mutation (LT(G33D)) or in vitro ligand coupling does not cause localized edema and inflammation in mice, yet these formulations retain potent adjuvant activity by enhancing functional Ab and cellular immune responses to coadministered Ags. Complete protection against in vivo lethal tetanus toxin challenge and the induction of Ag-specific CTL responses capable of killing target cells in vivo indicated in vivo efficacy of the induced immune responses. LT(G33D) proved superior to standard alum adjuvant regarding the magnitude and breadth of the induced immune responses. Immunizations in complex ganglioside knockout mice revealed a GM1-independent pathway of LT adjuvanticity. Immunostimulation by i.d. LT(G33D) is explained by its ability to induce migration of activated APCs to the proximal draining lymph nodes. LT(G33D) is a promising candidate adjuvant for human trials of parenteral vaccines in general and for current i.d. vaccine development in particular.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Exotoxinas/administração & dosagem , Gangliosídeo G(M1) , Adjuvantes Imunológicos/metabolismo , Compostos de Alúmen/administração & dosagem , Compostos de Alúmen/metabolismo , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/sangue , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Toxinas Bacterianas/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular/imunologia , Citotoxicidade Imunológica/genética , Enterotoxinas/administração & dosagem , Proteínas de Escherichia coli/administração & dosagem , Exotoxinas/metabolismo , Feminino , Gangliosídeo G(M1)/metabolismo , Inflamação/imunologia , Inflamação/prevenção & controle , Injeções Intradérmicas , Linfonodos/citologia , Linfonodos/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilgalactosaminiltransferases/deficiência , N-Acetilgalactosaminiltransferases/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Linfócitos T Citotóxicos/imunologia , Tétano/genética , Tétano/imunologia , Tétano/prevenção & controle , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/imunologia , Toxoide Tetânico/metabolismo
13.
FEBS Lett ; 580(16): 3872-8, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16797009

RESUMO

Co-agroinjection of Nicotiana benthamiana leaves with the pectin methylesterase (proPME) gene and the TMV:GFP vector resulted in a stimulation of virus-induced RNA silencing (inhibition of GFP production, virus RNA degradation, stimulation of siRNAs production). Conversely, co-expression of TMV:GFP with either antisense PME construct or with enzymatically inactive proPME restored synthesis of viral RNA. Furthermore, expression of proPME enhanced the GFP transgene-induced gene silencing accompanied by relocation of the DCL1 protein from nucleus to the cytoplasm and activation of siRNAs and miRNAs production. It was hypothesized that DCL1 relocated to the cytoplasm may use as substrates both miRNA precursor and viral RNA. The capacity for enhancing the RNA silencing is a novel function for the polyfunctional PME.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Nicotiana/enzimologia , Interferência de RNA , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Precursores Enzimáticos , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/biossíntese , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Estabilidade de RNA/genética , RNA Interferente Pequeno/biossíntese , RNA Viral/metabolismo , Rhizobium/genética , Vírus do Mosaico do Tabaco/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...