Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 95-104, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830074

RESUMO

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Šresolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


Assuntos
Clostridiales/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Clostridiales/química , Clostridiales/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Cristalização , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/química , Polissacarídeos/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547488

RESUMO

ß-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, ß-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum ß-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Evolução Molecular Direcionada , Temperatura Alta , beta-Glucosidase , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Estabilidade Enzimática/genética , Mutação de Sentido Incorreto , beta-Glucosidase/química , beta-Glucosidase/genética
3.
Proc Natl Acad Sci U S A ; 116(37): 18700-18709, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444298

RESUMO

Voltage-dependent potassium channels (Kvs) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K+-selective pore. Animal toxins targeting Kvs are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A third group of toxins blocks K+ conduction by an unknown mechanism via binding to the channel turrets. Here, we show that Conkunitzin-S1 (Cs1), a peptide toxin isolated from cone snail venom, binds at the turrets of Kv1.2 and targets a network of hydrogen bonds that govern water access to the peripheral cavities that surround the central pore. The resulting ectopic water flow triggers an asymmetric collapse of the pore by a process resembling that of inherent slow inactivation. Pore modulation by animal toxins exposes the peripheral cavity of K+ channels as a novel pharmacological target and provides a rational framework for drug design.


Assuntos
Membrana Celular/efeitos dos fármacos , Proteínas de Drosophila/antagonistas & inibidores , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.2/antagonistas & inibidores , Venenos de Moluscos/toxicidade , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Desenho de Fármacos , Feminino , Ligação de Hidrogênio/efeitos dos fármacos , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/isolamento & purificação , Canal de Potássio Kv1.2/metabolismo , Dose Letal Mediana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Venenos de Moluscos/química , Mutação , Oócitos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/isolamento & purificação , Superfamília Shaker de Canais de Potássio/metabolismo , Água/química , Água/metabolismo , Xenopus laevis
4.
Proteins ; 87(11): 917-930, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162722

RESUMO

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomassa , Celulossomas/química , Celulossomas/genética , Clostridium/química , Clostridium/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Alinhamento de Sequência
5.
PeerJ ; 3: e1126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401442

RESUMO

Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60-70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.

6.
Proc Natl Acad Sci U S A ; 112(19): 6044-9, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918392

RESUMO

Human mitochondria harbor a single type I chaperonin system that is generally thought to function via a unique single-ring intermediate. To date, no crystal structure has been published for any mammalian type I chaperonin complex. In this study, we describe the crystal structure of a football-shaped, double-ring human mitochondrial chaperonin complex at 3.15 Å, which is a novel intermediate, likely representing the complex in an early stage of dissociation. Interestingly, the mitochondrial chaperonin was captured in a state that exhibits subunit asymmetry within the rings and nucleotide symmetry between the rings. Moreover, the chaperonin tetradecamers show a different interring subunit arrangement when compared to GroEL. Our findings suggest that the mitochondrial chaperonins use a mechanism that is distinct from the mechanism of the well-studied Escherichia coli system.


Assuntos
Chaperoninas/química , Mitocôndrias/química , Proteínas Mitocondriais/química , Trifosfato de Adenosina/química , Animais , Chaperonina 10/química , Chaperonina 60/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Nucleotídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
7.
FEBS Lett ; 589(14): 1569-76, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25896019

RESUMO

The cellulolytic bacterium Ruminococcus flavefaciens of the herbivore rumen produces an elaborate cellulosome system, anchored to the bacterial cell wall via the covalently bound scaffoldin ScaE. Dockerin-bearing scaffoldins also bind to an autonomous cohesin of unknown function, called cohesin G (CohG). Here, we demonstrate that CohG binds to the scaffoldin-borne dockerin in opposite orientation on a distinct site, relative to that of ScaE. Based on these structural data, we propose that the complexed dockerin is still available to bind ScaE on the cell surface. CohG may thus serve as a molecular shuttle for delivery of scaffoldins to the bacterial cell surface.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Coesinas
8.
Nat Nanotechnol ; 10(4): 353-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25775151

RESUMO

The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.


Assuntos
Pareamento de Bases , Cristalização/métodos , Medições Luminescentes/métodos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/ultraestrutura , Espectrometria de Fluorescência/métodos , Luz , Teste de Materiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Ácidos Nucleicos Peptídicos/efeitos da radiação , Espalhamento de Radiação
9.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 450-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699736

RESUMO

Ruminococcus flavefaciens is a cellulolytic bacterium found in the rumen of herbivores and produces one of the most elaborate and variable cellulosome systems. The structure of an R. flavefaciens protein (RfCohG, ZP_06142108), representing a freestanding (non-cellulosomal) type III cohesin module, has been determined. A selenomethionine derivative with a C-terminal histidine tag was crystallized and diffraction data were measured to 2.44 Šresolution. Its structure was determined by single-wavelength anomalous dispersion, revealing eight molecules in the asymmetric unit. RfCohG exhibits the most complex among all known cohesin structures, possessing four α-helical elements and a topographical protuberance on the putative dockerin-binding surface.


Assuntos
Proteínas de Ciclo Celular/química , Celulossomas/química , Proteínas Cromossômicas não Histona/química , Ruminococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Selenometionina/química , Selenometionina/metabolismo , Homologia de Sequência de Aminoácidos , Tirosina/química , Coesinas
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 522-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531486

RESUMO

The anaerobic, thermophilic, cellulosome-producing bacterium Clostridium thermocellum relies on a variety of carbohydrate-active enzymes in order to efficiently break down complex carbohydrates into utilizable simple sugars. The regulation mechanism of the cellulosomal genes was unknown until recently, when genomic analysis revealed a set of putative operons in C. thermocellum that encode σI factors (i.e. alternative σ factors that control specialized regulon activation) and their cognate anti-σI factor (RsgI). These putative anti-σI-factor proteins have modules that are believed to be carbohydrate sensors. Three of these modules were crystallized and their three-dimensional structures were solved. The structures show a high overall degree of sequence and structural similarity to the cellulosomal family 3 carbohydrate-binding modules (CBM3s). The structures of the three carbohydrate sensors (RsgI-CBM3s) and a reference CBM3 are compared in the context of the structural determinants for the specificity of cellulose and complex carbohydrate binding. Fine structural variations among the RsgI-CBM3s appear to result in alternative substrate preferences for each of the sensors.


Assuntos
Celulose/química , Clostridium thermocellum/química , Proteínas Repressoras/química , Fator sigma/química , Transdução de Sinais , Sequência de Aminoácidos , Biomassa , Celulose/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Óperon , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Fator sigma/genética , Fator sigma/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
11.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 1): 116-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419632

RESUMO

The mitochondrial Hsp60-Hsp10 complex assists the folding of various proteins impelled by ATP hydrolysis, similar to the bacterial chaperonins GroEL and GroES. The near-atomic structural details of the mitochondrial chaperonins are not known, despite the fact that almost two decades have passed since the structures of the bacterial chaperonins became available. Here, the crystallization procedure, diffraction experiments and structure determination by molecular replacement of the mammalian mitochondrial chaperonin HSP60 (E321K mutant) and its co-chaperonin Hsp10 are reported.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Animais , Cristalização , Cristalografia por Raios X , Humanos
12.
Biotechnol Bioeng ; 111(7): 1296-303, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24420494

RESUMO

The use of protein crystals as a source of nanoscale biotemplates has attracted growing interest in recent years owing to their inherent internal order. As these crystals are vulnerable to environmental changes, potential applications require their stabilization by chemical crosslinking. We have previously shown that such intermolecular chemical crosslinking reactions occurring within protein crystals are not random events, but start at preferred crosslinking sites imposed by the alignment of protein molecules and their packing within the crystalline lattice. Here we propose a new working hypothesis and demonstrate its feasibility in enabling us to extricate homogeneous populations of single protein molecules that display chemical point mutations or of dimers that show homogeneous chemical crosslinking, and that have the potential for isolation of higher structures. Characterization of the crosslinking mechanism and its end products opens the way to the potential retrieval of such specific modified/intermolecular crosslinked products simply by effecting partial crosslinking at identified preferred sites, followed by time-controlled arrest of the crosslinking reaction and dissolution of the crystals by medium exchange complemented by chromatographic purification.


Assuntos
Estabilidade Proteica , Proteínas/química , Cristalização
13.
Artigo em Inglês | MEDLINE | ID: mdl-23832198

RESUMO

The cellulosome of the cellulolytic bacterium Clostridium thermocellum has a structural multi-modular protein called CipA (cellulosome-integrating protein A) that includes nine enzyme-binding cohesin modules and a family 3 cellulose-binding module (CBM3a). In the CipA protein, the CBM3a module is located between the second and third cohesin modules and is connected to them via proline/threonine-rich linkers. The structure of CBM3a with portions of the C- and N-terminal flanking linker regions, CBM3a-L, has been determined to a resolution of 1.98 Å. The structure is a ß-sandwich with a structural Ca(2+) ion. The structure is consistent with the previously determined CipA CBM structure; however, the structured linker regions provide a deeper insight into the overall cellulosome structure and assembly.


Assuntos
Proteínas de Bactérias/química , Celulases/química , Celulossomas/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de Membrana/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Celulases/genética , Celulases/metabolismo , Clostridium thermocellum/genética , Cristalização , Cristalografia por Raios X , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
14.
Artigo em Inglês | MEDLINE | ID: mdl-23722834

RESUMO

The Gag precursor is the major structural protein of the virion of human immunodeficiency virus-1 (HIV-1). Capsid protein (CA), a cleavage product of Gag, plays an essential role in virus assembly both in Gag-precursor multimerization and in capsid core formation. The carboxy-terminal domain (CTD) of CA contains 20 residues that are highly conserved across retroviruses and constitute the major homology region (MHR). Genetic evidence implies a role for the MHR in interactions between Gag precursors during the assembly of the virus, but the structural basis for this role remains elusive. This paper describes a novel triclinic structure of the HIV-1 CA CTD at 1.6 Å resolution with two canonical dimers of CA CTD in the asymmetric unit. The canonical dimers form a newly identified packing interface where interactions of four conserved MHR residues take place. This is the first structural indication that these MHR residues participate in the putative CTD-CTD interactions. These findings suggest that the molecules forming this novel interface resemble an intermediate structure that participates in the early steps of HIV-1 assembly. This interface may therefore provide a novel target for antiviral drugs.


Assuntos
Proteínas do Capsídeo/química , HIV-1/química , Multimerização Proteica , Montagem de Vírus/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas do Capsídeo/fisiologia , Cristalização , HIV-1/fisiologia , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
15.
J Biol Chem ; 288(23): 16827-16838, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23580648

RESUMO

The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nM) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Subunidades Proteicas/química , Ruminococcus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulose/química , Celulose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Coesinas
16.
PLoS One ; 8(2): e56138, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457513

RESUMO

BACKGROUND: Ruminococcus flavefaciens is one of the predominant fiber-degrading bacteria found in the rumen of herbivores. Bioinformatic analysis of the recently sequenced genome indicated that this bacterium produces one of the most intricate cellulosome systems known to date. A distinct ORF, encoding for a multi-modular protein, RflaF_05439, was discovered during mining of the genome sequence. It is composed of two tandem modules of currently undefined function that share 45% identity and a C-terminal X-dockerin modular dyad. Gaining insight into the diversity, architecture and organization of different types of proteins in the cellulosome system is essential for broadening our understanding of a multi-enzyme complex, considered to be one of the most efficient systems for plant cell wall polysaccharide degradation in nature. METHODOLOGY/PRINCIPAL FINDINGS: Following bioinformatic analysis, the second tandem module of RflaF_05439 was cloned and its selenium-labeled derivative was expressed and crystallized. The crystals belong to space group P21 with unit-cell parameters of a = 65.81, b = 60.61, c = 66.13 Å, ß = 107.66° and contain two protein molecules in the asymmetric unit. The crystal structure was determined at 1.38-Å resolution by X-ray diffraction using the single-wavelength anomalous dispersion (SAD) method and was refined to Rfactor and Rfree of 0.127 and 0.152 respectively. The protein molecule mainly comprises a ß-sheet flanked by short α-helixes, and a globular α-helical domain. The structure was found to be structurally similar to members of the NlpC/P60 superfamily of cysteine peptidases. CONCLUSIONS/SIGNIFICANCE: The 3D structure of the second repeat of the RflaF_05439 enabled us to propose a role for the currently undefined function of this protein. Its putative function as a cysteine peptidase is inferred from in silico structural homology studies. It is therefore apparent that cellulosomes integrate proteins with other functions in addition to the classic well-defined carbohydrate active enzymes.


Assuntos
Proteínas de Bactérias/química , Celulossomas/química , Papaína/química , Ruminococcus/química , Ruminococcus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência
17.
Artigo em Inglês | MEDLINE | ID: mdl-22949209

RESUMO

In Ruminococcus flavefaciens, a predominant fibre-degrading bacterium found in ruminants, cellulosomal proteins are anchored to the bacterial cell wall through a relatively small ScaE scaffoldin which includes a single type III cohesin. The cotton-binding protein CttA consists of two cellulose-binding modules and a C-terminal modular pair (XDoc) comprising an X-module and a contiguous dockerin, which exhibits high affinity towards the ScaE cohesin. Seleno-L-methionine-labelled derivatives of the ScaE cohesin module and the XDoc from CttA have been expressed, copurified and cocrystallized. The crystals belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 78.7, c = 203.4 Å, and the unit cell contains a single cohesin-XDoc complex in the asymmetric unit. The diffraction data were phased to 2.0 Å resolution using the anomalous signal of the Se atoms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Celulossomas/química , Proteínas Cromossômicas não Histona/química , Ruminococcus/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalização , Cristalografia por Raios X , Ligação Proteica , Ruminococcus/metabolismo , Coesinas
18.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 819-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751667

RESUMO

The crystal structure of the family 3b carbohydrate-binding module (CBM3b) of the cellulosomal multimodular hydrolytic enzyme cellobiohydrolase 9A (Cbh9A) from Clostridium thermocellum has been determined. Cbh9A CBM3b crystallized in space group P4(1) with four molecules in the asymmetric unit and diffracted to a resolution of 2.20 Šusing synchrotron radiation. The structure was determined by molecular replacement using C. thermocellum Cel9V CBM3b' (PDB entry 2wnx) as a model. The C. thermocellum Cbh9A CBM3b molecule forms a nine-stranded antiparallel ß-sandwich similar to other family 3 carbohydrate-binding modules (CBMs). It has a short planar array of two aromatic residues that are assumed to bind cellulose, yet it lacks the ability to bind cellulose. The molecule contains a shallow groove of unknown function that characterizes other family 3 CBMs with high sequence homology. In addition, it contains a calcium-binding site formed by a group of amino-acid residues that are highly conserved in similar structures. After determination of the three-dimensional structure of Cbh9A CBM3b, the site-specific N126W mutant was produced with the intention of enhancing the cellulose-binding ability of the CBM. Cbh9A CBM3b(N126W) crystallized in space group P4(1)2(1)2, with one molecule in the asymmetric unit. The crystals diffracted to 1.04 Šresolution using synchrotron radiation. The structure of Cbh9A CBM3b(N126W) revealed incorporation of the mutated Trp126 into the putative cellulose-binding strip of residues. Cellulose-binding experiments demonstrated the ability of Cbh9A CBM3b(N126W) to bind cellulose owing to the mutation. This is the first report of the engineered conversion of a non-cellulose-binding CBM3 to a binding CBM3 by site-directed mutagenesis. The three-dimensional structure of Cbh9A CBM3b(N126W) provided a structural correlation with cellulose-binding ability, revealing a longer planar array of definitive cellulose-binding residues.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência
19.
Methods Mol Biol ; 908: 101-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22843393

RESUMO

Experimental identification of carbohydrate-binding modules (CBM) and determination of ligand specificity of each CBM are complementary and compulsory steps for their characterization. Some CBMs are very specific for their primary substrate (e.g., cellulose), whereas others are relatively promiscuous or nonspecific in their substrate preference. Here we describe a simple procedure based on in-tube adsorption of a CBM to various insoluble polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) for determining the distribution of the CBM between the bound and unbound fractions. This technique enables qualitative assessment of the binding strength and ligand specificity for each CBM.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Especificidade por Substrato
20.
Methods Enzymol ; 510: 247-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22608730

RESUMO

Family 3 carbohydrate-binding modules (CBM3s) are among the most distinctive, diverse, and robust. CBM3s, which are numerous components of both free cellulases and cellulosomes, bind tightly to crystalline cellulose, and thus play a key role in cellulose degradation through their substrate targeting capacity. In addition to the accepted cellulose binding surface of the CBM3 molecule, a second type of conserved face (the "shallow groove") is retained on the opposite side of the molecule in all CBM3 subfamilies, irrespective of the loss or modification of the cellulose-binding function. The exact function of this highly conserved shallow groove is currently unknown. The cellulosomal system contains many linker segments that interconnect the various modules in long polypeptides chains. These linkers are varied in length (5-700 residues). The long linkers are commonly composed of repeated sequences that are often rich in Ser, Pro, and Thr residues. The exact function of the linker segments in the cellulosomal system is currently unknown, although they likely play several roles. In this chapter, we document the binding interaction between the conserved shallow-groove region of the CBM3s with selected cellulosomal linker segments, which may thus induce conformational changes in the quaternary structure of the cellulosome. These conformational changes would presumably promote changes in the overall arrangement of the cellulosomal enzymes, which would in turn serve to enhance cellulosome efficiency and degradation of recalcitrant polysaccharide substrates. Here, we describe two different methods for determining the interactions between a model CBM3 and cellulosomal linker peptides.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/enzimologia , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calorimetria/métodos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Celulases/química , Celulases/genética , Celulossomas/química , Celulossomas/genética , Clonagem Molecular/métodos , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Titulometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...