Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(10): 1550-1559, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381555

RESUMO

Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes. SIGNIFICANCE: Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.


Assuntos
Nanopartículas , RNA Mensageiro , Proteínas Recombinantes de Fusão , Animais , Camundongos , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Nanopartículas/química , Humanos , Feminino , Camundongos Endogâmicos C57BL , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Lipídeos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Linhagem Celular Tumoral
2.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215748

RESUMO

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transdução de Sinais , Imunoterapia , Apresentação de Antígeno , Antígeno B7-H1/metabolismo , Microambiente Tumoral
3.
Front Immunol ; 14: 1236332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795079

RESUMO

The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTßR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.


Assuntos
Neoplasias , Receptores do Fator de Necrose Tumoral , Humanos , Ligantes , Receptores do Fator de Necrose Tumoral/metabolismo , Antígenos CD40 , Transdução de Sinais
4.
Eur J Cancer ; 187: 147-160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167762

RESUMO

Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTßR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTßR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.


Assuntos
Receptor beta de Linfotoxina , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Células Mieloides , Citocinas , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
5.
J Immunol ; 209(8): 1475-1480, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096643

RESUMO

Vγ9Vδ2+ T cell-targeted immunotherapy is of interest to harness its MHC-independent cytotoxic potential against a variety of cancers. Recent studies have identified heterodimeric butyrophilin (BTN) 2A1 and BTN3A1 as the molecular entity providing "signal 1" to the Vγ9Vδ2 TCR, but "signal 2" costimulatory requirements remain unclear. Using a tumor cell-free assay, we demonstrated that a BTN2A1/3A1 heterodimeric fusion protein activated human Vγ9Vδ2+ T cells, but only in the presence of costimulatory signal via CD28 or NK group 2 member D. Nonetheless, addition of a bispecific γδ T cell engager BTN2A1/3A1-Fc-CD19scFv alone enhanced granzyme B-mediated killing of human CD19+ lymphoma cells when cocultured with Vγ9Vδ2+ T cells, suggesting expression of costimulatory ligand(s) on tumor cells is sufficient to satisfy the "signal 2" requirement. These results highlight the parallels of signal 1 and signal 2 requirements in αß and γδ T cell activation and demonstrate the utility of heterodimeric BTNs to promote targeted activation of γδ T cells.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T gama-delta , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Granzimas , Humanos , Ligantes , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
6.
J Immunol ; 209(3): 510-525, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817517

RESUMO

Coinhibition of TIGIT (T cell immunoreceptor with Ig and ITIM domains) and PD-1/PD-L1 (PD-1/L1) may improve response rates compared with monotherapy PD-1/L1 blockade in checkpoint naive non-small cell lung cancer with PD-L1 expression >50%. TIGIT mAbs with an effector-competent Fc can induce myeloid cell activation, and some have demonstrated effector T cell depletion, which carries a clinical liability of unknown significance. TIGIT Ab blockade translates to antitumor activity by enabling PVR signaling through CD226 (DNAM-1), which can be directly inhibited by PD-1. Furthermore, DNAM-1 is downregulated on tumor-infiltrating lymphocytes (TILs) in advanced and checkpoint inhibition-resistant cancers. Therefore, broadening clinical responses from TIGIT blockade into PD-L1low or checkpoint inhibition-resistant tumors, may be induced by immune costimulation that operates independently from PD-1/L1 inhibition. TNFSF14 (LIGHT) was identified through genomic screens, in vitro functional analysis, and immune profiling of TILs as a TNF ligand that could provide broad immune activation. Accordingly, murine and human bifunctional fusion proteins were engineered linking the extracellular domain of TIGIT to the extracellular domain of LIGHT, yielding TIGIT-Fc-LIGHT. TIGIT competitively inhibited binding to all PVR ligands. LIGHT directly activated myeloid cells through interactions with LTßR (lymphotoxin ß receptor), without the requirement for a competent Fc domain to engage Fcγ receptors. LIGHT costimulated CD8+ T and NK cells through HVEM (herpes virus entry mediator A). Importantly, HVEM was more widely expressed than DNAM-1 on T memory stem cells and TILs across a range of tumor types. Taken together, the mechanisms of TIGIT-Fc-LIGHT promoted strong antitumor activity in preclinical tumor models of primary and acquired resistance to PD-1 blockade, suggesting that immune costimulation mediated by LIGHT may broaden the clinical utility of TIGIT blockade.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/genética , Humanos , Camundongos , Células Mieloides/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
7.
Cancer Immunol Res ; 8(2): 230-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852716

RESUMO

Disrupting the binding of CD47 to SIRPα has emerged as a promising immunotherapeutic strategy for advanced cancers by potentiating antibody-dependent cellular phagocytosis (ADCP) of targeted antibodies. Preclinically, CD47/SIRPα blockade induces antitumor activity by increasing the phagocytosis of tumor cells by macrophages and enhancing the cross-presentation of tumor antigens to CD8+ T cells by dendritic cells; both of these processes are potentiated by CD40 signaling. Here we generated a novel, two-sided fusion protein incorporating the extracellular domains of SIRPα and CD40L, adjoined by a central Fc domain, termed SIRPα-Fc-CD40L. SIRPα-Fc-CD40L bound CD47 and CD40 with high affinity and activated CD40 signaling in the absence of Fc receptor cross-linking. No evidence of hemolysis, hemagglutination, or thrombocytopenia was observed in vitro or in cynomolgus macaques. Murine SIRPα-Fc-CD40L outperformed CD47 blocking and CD40 agonist antibodies in murine CT26 tumor models and synergized with immune checkpoint blockade of PD-1 and CTLA4. SIRPα-Fc-CD40L activated a type I interferon response in macrophages and potentiated the activity of ADCP-competent targeted antibodies both in vitro and in vivo These data illustrated that whereas CD47/SIRPα inhibition could potentiate tumor cell phagocytosis, CD40-mediated activation of a type I interferon response provided a bridge between macrophage- and T-cell-mediated immunity that significantly enhanced durable tumor control and rejection.


Assuntos
Antígenos CD40/metabolismo , Antígeno CD47/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Recombinantes de Fusão/farmacologia , Imunidade Adaptativa , Animais , Ligante de CD40/genética , Ligante de CD40/imunologia , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Interferon Tipo I/metabolismo , Macaca fascicularis , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Aleatória , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
8.
J Immunother Cancer ; 6(1): 149, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563566

RESUMO

Simultaneous blockade of immune checkpoint molecules and co-stimulation of the TNF receptor superfamily (TNFRSF) is predicted to improve overall survival in human cancer. TNFRSF co-stimulation depends upon coordinated antigen recognition through the T cell receptor followed by homotrimerization of the TNFRSF, and is most effective when these functions occur simultaneously. To address this mechanism, we developed a two-sided human fusion protein incorporating the extracellular domains (ECD) of PD-1 and OX40L, adjoined by a central Fc domain, termed PD1-Fc-OX40L. The PD-1 end of the fusion protein binds PD-L1 and PD-L2 with affinities of 2.08 and 1.76 nM, respectively, and the OX40L end binds OX40 with an affinity of 246 pM. High binding affinity on both sides of the construct translated to potent stimulation of OX40 signaling and PD1:PD-L1/L2 blockade, in multiple in vitro assays, including improved potency as compared to pembrolizumab, nivolumab, tavolixizumab and combinations of those antibodies. Furthermore, when activated human T cells were co-cultured with PD-L1 positive human tumor cells, PD1-Fc-OX40L was observed to concentrate to the immune synapse, which enhanced proliferation of T cells and production of IL-2, IFNγ and TNFα, and led to efficient killing of tumor cells. The therapeutic activity of PD1-Fc-OX40L in established murine tumors was significantly superior to either PD1 blocking, OX40 agonist, or combination antibody therapy; and required CD4+ T cells for maximum response. Importantly, all agonist functions of PD1-Fc-OX40L are independent of Fc receptor cross-linking. Collectively, these data demonstrate a highly potent fusion protein that is part of a platform, capable of providing checkpoint blockade and TNFRSF costimulation in a single molecule, which uniquely localizes TNFRSF costimulation to checkpoint ligand positive tumor cells.


Assuntos
Ligante de CD40/metabolismo , Fragmentos Fc das Imunoglobulinas , Imunomodulação , Neoplasias/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Ligante de CD40/química , Linhagem Celular , Citotoxicidade Imunológica , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/mortalidade , Receptor de Morte Celular Programada 1/química , Ligação Proteica , Receptores OX40/metabolismo , Proteínas Recombinantes de Fusão/química , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
Nat Biotechnol ; 36(8): 758-764, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010674

RESUMO

Increased tryptophan (Trp) catabolism in the tumor microenvironment (TME) can mediate immune suppression by upregulation of interferon (IFN)-γ-inducible indoleamine 2,3-dioxygenase (IDO1) and/or ectopic expression of the predominantly liver-restricted enzyme tryptophan 2,3-dioxygenase (TDO). Whether these effects are due to Trp depletion in the TME or mediated by the accumulation of the IDO1 and/or TDO (hereafter referred to as IDO1/TDO) product kynurenine (Kyn) remains controversial. Here we show that administration of a pharmacologically optimized enzyme (PEGylated kynureninase; hereafter referred to as PEG-KYNase) that degrades Kyn into immunologically inert, nontoxic and readily cleared metabolites inhibits tumor growth. Enzyme treatment was associated with a marked increase in the tumor infiltration and proliferation of polyfunctional CD8+ lymphocytes. We show that PEG-KYNase administration had substantial therapeutic effects when combined with approved checkpoint inhibitors or with a cancer vaccine for the treatment of large B16-F10 melanoma, 4T1 breast carcinoma or CT26 colon carcinoma tumors. PEG-KYNase mediated prolonged depletion of Kyn in the TME and reversed the modulatory effects of IDO1/TDO upregulation in the TME.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Hidrolases/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Neoplasias/tratamento farmacológico , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral
10.
Cancer Immunol Res ; 4(9): 766-78, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27364122

RESUMO

T-cell costimulation typically occurs in a defined microenvironment that is not recapitulated by agonistic antibody therapy. To deliver such stimulation under more favorable conditions, we investigated whether an allogeneic cell-based vaccine that secreted Fc-OX40L, Fc-ICOSL, or Fc-4-1BBL would activate and expand T cells comparably with systemically administered agonist antibodies. Among these costimulators, locally secreted Fc-OX40L provided superior priming of antigen-specific CD8(+) T cells, compared with combinations with OX40 antibodies or vaccine alone. Vaccine-expressed Fc-OX40L also stimulated IFNγ, TNFα, granzyme B, and IL2 by antigen-specific CD8(+) T cells similarly to OX40 antibodies, without off-target consequences such as proinflammatory cytokine induction. Vaccine-secreted Fc-OX40L increased CD127(+)KLRG-1(-) memory precursor cells during the contraction phase, resulting in improved proliferation upon secondary antigen challenge, as compared with OX40 antibody. A cell-based vaccine cosecreting gp96-Ig and Fc-OX40L led to even more pronounced tumor control, complete tumor rejection, and increased tumor antigen-specific T-cell proliferation, including in tumor-infiltrating lymphocytes, as compared with combinations of gp96-Ig vaccine and OX40 antibodies, in mice with established melanoma or colorectal carcinoma. These data suggest that local modulation of the vaccine microenvironment has unexpected advantages over systemic costimulation with agonistic antibodies, which may simplify the clinical translation of such combination immunotherapies into humans. Cancer Immunol Res; 4(9); 766-78. ©2016 AACR.


Assuntos
Vacinas Anticâncer/imunologia , Imunidade , Memória Imunológica , Neoplasias/imunologia , Linfócitos T/imunologia , Ligante 4-1BB/antagonistas & inibidores , Ligante 4-1BB/imunologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Melanoma Experimental , Glicoproteínas de Membrana , Camundongos , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/metabolismo
11.
Mol Cell ; 58(2): 311-322, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25773599

RESUMO

The remarkable capacity for pluripotency and self-renewal in embryonic stem cells (ESCs) requires a finely tuned transcriptional circuitry wherein the pathways and genes that initiate differentiation are suppressed, but poised to respond rapidly to developmental signals. To elucidate transcriptional control in mouse ESCs in the naive, ground state, we defined the distribution of engaged RNA polymerase II (Pol II) at high resolution. We find that promoter-proximal pausing of Pol II is most enriched at genes regulating cell cycle and signal transduction and not, as expected, at developmental or bivalent genes. Accordingly, ablation of the primary pause-inducing factor NELF does not increase expression of lineage markers, but instead causes proliferation defects, embryonic lethality, and dysregulation of ESC signaling pathways. Indeed, ESCs lacking NELF have dramatically attenuated FGF/ERK activity, rendering them resistant to differentiation. This work thus uncovers a key role for NELF-mediated pausing in establishing the responsiveness of stem cells to developmental cues.


Assuntos
Células-Tronco Embrionárias/enzimologia , Mamíferos/crescimento & desenvolvimento , RNA Polimerase III/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Mamíferos/metabolismo , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
12.
PLoS One ; 9(5): e92947, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817273

RESUMO

In mammals, the complex tissue- and developmental-specific expression of genes within the ß-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult ß-globin genes, we investigate the effects of two deletions engineered within the endogenous murine ß-globin locus. First, we find that deletion of the ß2-globin gene promoter, while eliminating ß2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the ß-globin genes for LCR activity. Second, we characterize a novel enhancer located 3' of the ß2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin "landscape" or even by functional assays.


Assuntos
Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência , Globinas beta/genética , Animais , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Região de Controle de Locus Gênico/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Genes Dev ; 26(9): 933-44, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22549956

RESUMO

The expression of many metazoan genes is regulated through controlled release of RNA polymerase II (Pol II) that has paused during early transcription elongation. Pausing is highly enriched at genes in stimulus-responsive pathways, where it has been proposed to poise downstream targets for rapid gene activation. However, whether this represents the major function of pausing in these pathways remains to be determined. To address this question, we analyzed pausing within several stimulus-responsive networks in Drosophila and discovered that paused Pol II is much more prevalent at genes encoding components and regulators of signal transduction cascades than at inducible downstream targets. Within immune-responsive pathways, we found that pausing maintains basal expression of critical network hubs, including the key NF-κB transcription factor that triggers gene activation. Accordingly, loss of pausing through knockdown of the pause-inducing factor NELF leads to broadly attenuated immune gene activation. Investigation of murine embryonic stem cells revealed that pausing is similarly widespread at genes encoding signaling components that regulate self-renewal, particularly within the MAPK/ERK pathway. We conclude that the role of pausing goes well beyond poising-inducible genes for activation and propose that the primary function of paused Pol II is to establish basal activity of signal-responsive networks.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , RNA Polimerase II/fisiologia , Ativação Transcricional , Animais , Drosophila melanogaster/imunologia , Células-Tronco Embrionárias/metabolismo , Imunidade/genética , Janus Quinases/metabolismo , Camundongos , RNA Polimerase II/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
15.
Blood ; 117(17): 4600-8, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21378272

RESUMO

A transient erythromyeloid wave of definitive hematopoietic progenitors (erythroid/myeloid progenitors [EMPs]) emerges in the yolk sac beginning at embryonic day 8.25 (E8.25) and colonizes the liver by E10.5, before adult-repopulating hematopoietic stem cells. At E11.5, we observe all maturational stages of erythroid precursors in the liver and the first definitive erythrocytes in the circulation. These early fetal liver erythroblasts express predominantly adult ß-globins and the definitive erythroid-specific transcriptional modifiers c-myb, Sox6, and Bcl11A. Surprisingly, they also express low levels of "embryonic" ßH1-, but not εy-, globin transcripts. Consistent with these results, RNA polymerase and highly modified histones are found associated with ßH1- and adult globin, but not εy-globin, genes. E11.5 definitive proerythroblasts from mice transgenic for the human ß-globin locus, like human fetal erythroblasts, express predominately human γ-, low ß-, and no ε-globin transcripts. Significantly, E9.5 yolk sac-derived EMPs cultured in vitro have similar murine and human transgenic globin expression patterns. Later liver proerythroblasts express low levels of γ-globin, while adult marrow proerythroblasts express only ß-globin transcripts. We conclude that yolk sac-derived EMPs, the first of 2 origins of definitive erythropoiesis, express a unique pattern of globin genes as they generate the first definitive erythrocytes in the liver of the mammalian embryo.


Assuntos
Células Eritroides/citologia , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Hematopoéticas/citologia , Fígado , Globinas beta/genética , Animais , Animais não Endogâmicos , Linhagem da Célula/fisiologia , Eritroblastos/citologia , Eritrócitos/citologia , Fator de Transcrição GATA1/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Fígado/embriologia , Fígado/fisiologia , Mamíferos , Camundongos , Camundongos Transgênicos , Saco Vitelino/fisiologia
16.
Blood ; 117(19): 5207-14, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21321362

RESUMO

In mammalian nuclei, a select number of tissue-specific gene loci exhibit broadly distributed patterns of histone modifications, such as histone hyperacetylation, that are normally associated with active gene promoters. Previously, we characterized such hyperacetylated domains within mammalian ß-globin gene loci, and determined that within the murine locus, neither the ß-globin locus control region nor the gene promoters were required for domain formation. Here, we identify a developmentally specific erythroid enhancer, hypersensitive site-embryonic 1 (HS-E1), located within the embryonic ß-globin domain in mouse, which is homologous to a region located downstream of the human embryonic ε-globin gene. This sequence exhibits nuclease hypersensitivity in primitive erythroid cells and acts as an enhancer in gain-of-function assays. Deletion of HS-E1 from the endogenous murine ß-globin locus results in significant decrease in the expression of the embryonic ß-globin genes and loss of the domain-wide pattern of histone hyperacetylation. The data suggest that HS-E1 is an enhancer that is uniquely required for ß-like globin expression in primitive erythroid cells, and that it defines a novel class of enhancer that works in part by domain-wide modulation of chromatin structure.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Globinas beta/genética , Acetilação , Animais , Imunoprecipitação da Cromatina , Embrião de Mamíferos , Células Eritroides/metabolismo , Expressão Gênica , Histonas/genética , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Cell ; 37(4): 449-50, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20188661

RESUMO

Recently in Molecular Cell, Lin et al. (2010) showed that multiple MLL-fusion proteins implicated in mixed-lineage leukemia (MLL) associate with AFF4, ELLs, and the positive transcription elongation factor P-TEFb, providing evidence that the dysregulated gene expression in MLL patients is due to aberrant transcription elongation.


Assuntos
Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , Leucemia/genética , Leucemia/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Fatores de Elongação da Transcrição/genética
18.
Biochem Cell Biol ; 87(5): 781-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19898527

RESUMO

The beta-globin gene cluster in mammals, consisting of a set of erythroid-specific, developmentally activated, and (or) silenced genes, has long presented a model system for the investigation of gene regulation. As the number and complexity of models of gene activation and repression have expanded, so too has the complexity of phenomena associated with the regulation of the beta-globin genes. Models for expression from within the locus must account for local (promoter-proximal), distal (enhancer-mediated), and domain-wide components of the regulatory pathways that proceed through mammalian development and erythroid differentiation. In this review, we provide an overview of transcriptional activation, silencing, chromatin structure, and the function of distal regulatory elements involved in the normal developmental regulation of beta-globin gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Loci Gênicos , Mamíferos/genética , Globinas beta/genética , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Redes Reguladoras de Genes/fisiologia , Loci Gênicos/genética , Humanos , Modelos Biológicos , Fatores de Transcrição/fisiologia
19.
Blood ; 114(16): 3479-88, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19690338

RESUMO

Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the beta-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications "hyperacetylated domains." Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine beta-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of beta-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within beta-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form.


Assuntos
Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Locos de Características Quantitativas/fisiologia , Globinas beta/biossíntese , Acetilação , Animais , Camundongos , Estrutura Terciária de Proteína/fisiologia
20.
Am J Respir Cell Mol Biol ; 40(2): 147-58, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18688039

RESUMO

The activation of transcription factor NF-kappaB is controlled by two main pathways: the classical canonical (RelA/p65-p50)- and the alternative noncanonical (RelB/p52)-NF-kappaB pathways. RelB has been shown to play a protective role in RelA/p65-mediated proinflammatory cytokine release in immune-inflammatory lymphoid cells. Increased infiltration of macrophages and lymphoid cells occurs in lungs of patients with chronic obstructive pulmonary disease, leading to abnormal inflammation. We hypothesized that RelB, and its signaling pathway, is differentially regulated in macrophages and B cells and in lung cells, leading to differential regulation of proinflammatory cytokines in response to cigarette smoke (CS). CS exposure increased the levels of RelB and NF-kappaB-inducing kinase associated with recruitment of RelB on promoters of the IL-6 and macrophage inflammatory protein-2 genes in mouse lung. Treatment of macrophage cell line, MonoMac6, with CS extract showed activation of RelB. In contrast, RelB was degraded by a proteasome-dependent mechanism in B lymphocytes (human Ramos, mouse WEHI-231, and primary mouse spleen B cells), suggesting that RelB is differentially regulated in lung inflammatory and lymphoid cells in response to CS exposure. Transient transfection of dominant negative IkappaB-kinase-alpha and double mutants of NF-kappaB-inducing kinase partially attenuated the CS extract-mediated loss of RelB in B cells and normalized the increased RelB level in macrophages. Taken together, these data suggest that RelB is differentially regulated in response to CS exposure in macrophages, B cells, and in lung cells by IkappaB-kinase-alpha-dependent mechanism. Rapid degradation of RelB signals for RelA/p65 activation and loss of its protective ability to suppress the proinflammatory cytokine release in lymphoid B cells.


Assuntos
Linfócitos B/metabolismo , Quinase I-kappa B/metabolismo , Pulmão/metabolismo , Fumar/efeitos adversos , Fator de Transcrição RelB/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Linfotoxina-beta/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...