Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(24)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33690193

RESUMO

Gd2O3:1% Er3+, 18% Yb3+,x% Mg2+(x = 0; 2.5; 4; 5; 6; 8;10; 20; 25; 50) and Gd2O3:1% Er3+, 18% Yb3+, 2,5% Mg2+,y% Li+(y = 0.5-2.5) nanoparticles were synthesized by homogenous precipitation method and calcined at 900 °C for 3 h in air atmosphere. Powder x-ray diffraction, scanning electron microscopy, cathodoluminescence, transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence techniques were employed to characterize the obtained nanoparticles. We observed a 8-fold increase in red luminescence for samples suspended in DMSO solution for 2.5% of Mg2+doping. The x-ray analysis shows that for the concentration of 2.5% Mg, the size of the crystallites in the NPs is the largest, which is mainly responsible for the increase in the intensity of the upconversion luminescence. But the addition of Li+ions did not improve the luminescence of the upconversion due to decreasing of crystallites size of the NPs. Synthesized nanomaterials with very effective upconverting luminescence, can act as luminescent markers inin vivoimaging. The cytotoxicity of the nanoparticles was evaluated on the 4T1 cell line for the first time.

2.
J Phys Chem C Nanomater Interfaces ; 124(12): 6871-6883, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952770

RESUMO

Magnetic nanoparticles of Fe3O4 doped by different amounts of Y3+ (0, 0.1, 1, and 10%) ions were designed to obtain maximum heating efficiency in magnetic hyperthermia for cancer treatment. Single-phase formation was evident by X-ray diffraction measurements. An improved magnetization value was obtained for the Fe3O4 sample with 1% Y3+ doping. The specific absorption rate (SAR) and intrinsic loss of power (ILP) values for prepared colloids were obtained in water. The best results were estimated for Fe3O4 with 0.1% Y3+ ions (SAR = 194 W/g and ILP = 1.85 nHm2/kg for a magnetic field of 16 kA/m with the frequency of 413 kHz). The excellent biocompatibility with low cell cytotoxicity of Fe3O4:Y nanoparticles was observed. Immediately after magnetic hyperthermia treatment with Fe3O4:0.1%Y, a decrease in 4T1 cells' viability was observed (77% for 35 µg/mL and 68% for 100 µg/mL). These results suggest that nanoparticles of Fe3O4 doped by Y3+ ions are suitable for biomedical applications, especially for hyperthermia treatment.

3.
Nanotechnology ; 31(22): 225711, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32032002

RESUMO

The paramagnetic Y3-0.02-x Er0.02Yb x Al5O12 (x = 0.02, 0.06, 0.10, 0.12, 0.18, 0.20) nanocrystals (NCs) were synthesized by the microwave-induced solution combustion method. The XRD, TEM and SEM techniques were applied to determine the NCs' structures and sizes. The XRD patterns confirmed that the NCs have for the most part a regular structure of the Y3Al5O12 (YAG) phase. The changes of the distance between donor Yb3+ (sensitizer) and acceptor Er3+ (activator) were realized by changing the donor's concentration with a constant amount of acceptor. Under 980 nm excitation, at room temperature, the NCs exhibited strong red emission near 660 and 675 nm, and green upconversion emission at 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) â†’ Er3+ (4I15/2). The strongest emission was observed in a sample containing 18% Yb3+ ions. The red and green emission intensities are respectively about 5 and 12 times higher as compared to NCs doped with 2% of Yb3+. In order to prove that the main factor responsible for the increase of the upconversion luminescence efficiency is reduction of the distance between Yb3+ and Er3+, we examined, for the first time the influence of hydrostatic pressure on luminescence and luminescence decay time of the radiative transitions inside donor ion. The decrease of both luminescence intensity and luminescence decay times, with increasing hydrostatic pressure was observed. After applying hydrostatic pressure to samples with e.g. 2% and 6% Yb3+, the distance between the donor and acceptor decreases. However, for higher concentrations of the donor, this distance is smaller, and this leads to the effective energy transfer to Er3+ ions. With increasing pressure, the maximum intensity of near infrared emission is observed at 1029, 1038 and 1047 nm, what corresponds to 2F5/2 â†’ 2F7/2 transition of Yb3+.

4.
Nanotechnology ; 29(2): 025702, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29130898

RESUMO

Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ-gadolinium molybdates and ξ-molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-[Formula: see text] (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.


Assuntos
Érbio/química , Gadolínio/química , Substâncias Luminescentes/química , Molibdênio/química , Nanopartículas/química , Imagem Óptica/métodos , Itérbio/química , Astrócitos/citologia , Células HeLa , Humanos , Medições Luminescentes/métodos , Microscopia Confocal/métodos , Nanopartículas/ultraestrutura , Nanotecnologia/métodos
5.
ACS Appl Mater Interfaces ; 8(31): 19860-5, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27454556

RESUMO

Electropolymerizable functional and cross-linking monomers were used to prepare conducting molecularly imprinted polymer film with improved surface area with the help of a sacrificial metal-organic framework (MOF). Subsequent dissolution of the MOF layer resulted in a surface developed MIP film. This surface enlargement increased the analyte accessibility to imprinted molecular cavities. Application of the porous MIP film as a recognition unit of an extended-gate field effect transistor (EG-FET) chemosensor effectively enhanced analytical current signals of determination of recombinant human neutrophil gelatinase-associated lipocalin (NGAL).

6.
Phys Chem Chem Phys ; 17(37): 24029-37, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26313635

RESUMO

This study describes a new method of passivating ZnO nanofiber-based devices with a ZnS layer. This one-step process was carried out in H2S gas at room temperature, and resulted in the formation of core/shell ZnO/ZnS nanofibers. This study presents the structural, optical and electrical properties of ZnO/ZnS nanofibers formed by a 2 nm ZnS sphalerite crystal shell covering a 5 nm ZnO wurtzite crystal core. The passivation process prevented free carriers from capture by oxygen molecules and significantly reduced the impact of O2 on nanostructure conductivity. The conductivity of the nanofibers was increased by three orders of magnitude after the sulfidation, the photoresponse time was reduced from 1500 s to 30 s, and the cathodoluminescence intensity increased with the sulfidation time thanks to the removal of ZnO surface defects by passivation. The ZnO/ZnS nanofibers were stable in water for over 30 days, and in phosphate buffers of acidic, neutral and alkaline pH for over 3 days. The by-products of the passivation process did not affect the conductivity of the devices. The potential of ZnO/ZnS nanofibers for protein biosensing is demonstrated using biotin and streptavidin as a model system. The presented ZnS shell preparation method can facilitate the construction of future sensors and protects the ZnO surface from dissolving in a biological environment.


Assuntos
Técnicas Biossensoriais/métodos , Gases/química , Nanofibras/química , Sulfetos/química , Compostos de Zinco/química , Óxido de Zinco/química , Biotina/análise , Eletricidade , Estreptavidina/análise , Propriedades de Superfície
7.
Biosens Bioelectron ; 74: 526-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26186151

RESUMO

A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical polymerization of bis(bithiophene) derivatives bearing cytosine and boronic acid substituents, in the presence of the inosine template and a thiophene cross-linker. After MIP film deposition, the template was removed, and was confirmed by UV-visible spectroscopy. Subsequently, the film composition was characterized by spectroscopic techniques, and its morphology and thickness were determined by AFM. The finally MIP film-coated extended-gate field-effect transistor (EG-FET) was used for signal transduction. This combination is not widely studied in the literature, despite the fact that it allows for facile integration of electrodeposited MIP film with FET transducer. The linear dynamic concentration range of the chemosensor was 0.5-50 µM with inosine detectability of 0.62 µM. The obtained detectability compares well to the levels of the inosine in body fluids which are in the range 0-2.9 µM for patients with diagnosed diabetic nephropathy, gout or hyperuricemia, and can reach 25 µM in certain cases. The imprinting factor for inosine, determined from piezomicrogravimetric experiments with use of the MIP film-coated quartz crystal resonator, was found to be 5.5. Higher selectivity for inosine with respect to common interferents was also achieved with the present molecularly engineered sensing element. The obtained analytical parameters of the devised chemosensor allow for its use for practical sample measurements.


Assuntos
Condutometria/instrumentação , Inosina/análise , Sistemas Microeletromecânicos/instrumentação , Microeletrodos , Impressão Molecular/métodos , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Inosina/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Nanotechnology ; 24(23): 235702, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23669145

RESUMO

An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er(3+) and Yb(3+) doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future 'smart' theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.


Assuntos
Endocitose , Érbio/metabolismo , Fluoretos/metabolismo , Nanopartículas/química , Itérbio/metabolismo , Ítrio/metabolismo , Células HeLa , Humanos , Luminescência , Microscopia Confocal , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectrometria de Fluorescência , Coloração e Rotulagem , Difração de Raios X
9.
J Phys Condens Matter ; 25(19): 194104, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612021

RESUMO

This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.


Assuntos
Álcoois/química , Coloides/síntese química , Medições Luminescentes/métodos , Óxido de Magnésio/química , Microscopia de Fluorescência/métodos , Nanopartículas/química , Óxido de Zinco/química , Meios de Contraste/síntese química , Células HeLa , Humanos , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula , Hidróxido de Sódio/química , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...