Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260435

RESUMO

While most biological and cellular immunotherapies recognize extracellular targets, T cell receptor (TCR) therapeutics are unique in their ability to recognize the much larger pool of intracellular antigens found on virus-infected or cancerous cells. Recombinant T cell receptor (rTCR)-based therapeutics are gaining momentum both preclinically and clinically highlighted by recent positive phase III human clinical trial results for a TCR/CD3 bifunctional protein in uveal melanoma. Unlike antibody-based T cell engagers whose molecular formats have been widely and extensively evaluated, little data exist describing the putative activities of varied bifunctional formats using rTCRs. Here we generate rTCR/anti-CD3 bifunctionals directed toward NY-ESO-1 or MAGE-A3 with a variety of molecular formats. We show that inducing strong redirected lysis activity against tumors displaying either NY-ESO-1 or MAGE-A3 is highly restricted to small, tandem binding formats with an rTCR/antiCD3 Fab demonstrating the highest potency, rTCR/anti-CD3 single chain variable domain fragment showing similar but consistently weaker potency, and IgG-like or IgG-Fc-containing molecules demonstrating poor activity. We believe this is a universal trait of rTCR bifunctionals, given the canonical TCR/human leukocyte antigen structural paradigm.


Assuntos
Antígenos de Neoplasias , Antígeno HLA-A2 , Linhagem Celular Tumoral , Humanos , Imunoglobulina G , Receptores de Antígenos de Linfócitos T , Linfócitos T
2.
Structure ; 24(4): 641-651, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996964

RESUMO

A challenge in the structure-based design of specificity is modeling the negative states, i.e., the complexes that you do not want to form. This is a difficult problem because mutations predicted to destabilize the negative state might be accommodated by small conformational rearrangements. To overcome this challenge, we employ an iterative strategy that cycles between sequence design and protein docking in order to build up an ensemble of alternative negative state conformations for use in specificity prediction. We have applied our technique to the design of heterodimeric CH3 interfaces in the Fc region of antibodies. Combining computationally and rationally designed mutations produced unique designs with heterodimer purities greater than 90%. Asymmetric Fc crystallization was able to resolve the interface mutations; the heterodimer structures confirmed that the interfaces formed as designed. With these CH3 mutations, and those made at the heavy-/light-chain interface, we demonstrate one-step synthesis of four fully IgG-bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/química , Engenharia de Proteínas/métodos , Biologia Computacional/métodos , Cristalografia por Raios X , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Domínios Proteicos , Multimerização Proteica
3.
Mol Cancer Ther ; 8(12): 3181-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19934279

RESUMO

The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC50 of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.


Assuntos
Trifosfato de Adenosina/farmacologia , Neoplasias/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridazinas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Catálise/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Cinética , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridazinas/química , Triazóis/química , Carga Tumoral/efeitos dos fármacos
4.
J Biol Chem ; 279(53): 55827-32, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15507431

RESUMO

Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase required for signaling from immunoreceptors in various hematopoietic cells. Phosphorylation of two tyrosine residues in the activation loop of the Syk kinase catalytic domain is necessary for signaling, a phenomenon typical of tyrosine kinase family members. Syk in vitro enzyme activity, however, does not depend on phosphorylation (activation loop tyrosine --> phenylalanine mutants retain catalytic activity). We have determined the x-ray structure of the unphosphorylated form of the kinase catalytic domain of Syk. The enzyme adopts a conformation of the activation loop typically seen only in activated, phosphorylated tyrosine kinases, explaining why Syk does not require phosphorylation for activation. We also demonstrate that Gleevec (STI-571, Imatinib) inhibits the isolated kinase domains of both unphosphorylated Syk and phosphorylated Abl with comparable potency. Gleevec binds Syk in a novel, compact cis-conformation that differs dramatically from the binding mode observed with unphosphorylated Abl, the more Gleevec-sensitive form of Abl. This finding suggests the existence of two distinct Gleevec binding modes: an extended, trans-conformation characteristic of tight binding to the inactive conformation of a protein kinase and a second compact, cis-conformation characteristic of weaker binding to the active conformation. Finally, the Syk-bound cis-conformation of Gleevec bears a striking resemblance to the rigid structure of the nonspecific, natural product kinase inhibitor staurosporine.


Assuntos
Precursores Enzimáticos/química , Piperazinas/farmacologia , Proteínas Tirosina Quinases/química , Pirimidinas/farmacologia , Animais , Benzamidas , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ligação de Hidrogênio , Mesilato de Imatinib , Insetos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Estaurosporina/farmacologia , Quinase Syk , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...