Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257464

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been introduced to detect pesticides at low concentrations and in complex matrices to help developing countries monitor pesticides to keep their concentrations at safe levels in food and the environment. SERS is a surface-sensitive technique that enhances the Raman signal of molecules absorbed on metal nanostructure surfaces and provides vibrational information for sample identification and quantitation. In this work, we report the use of silver nanostars (AgNs) as SERS-active elements to detect four neonicotinoid pesticides (thiacloprid, imidacloprid, thiamethoxam and nitenpyram). The SERS substrates were prepared with multiple depositions of the nanostars using a self-assembly approach to give a dense coverage of the AgNs on a glass surface, which ultimately increased the availability of the spikes needed for SERS activity. The SERS substrates developed in this work show very high sensitivity and excellent reproducibility. Our research opens an avenue for the development of portable, field-based pesticide sensors, which will be critical for the effective monitoring of these important but potentially dangerous chemicals.

2.
J Phys Chem Lett ; 14(46): 10388-10395, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37955593

RESUMO

Quantum mechanical and machine learning models are used to analyze the properties of silicon composite materials and their impact on anode performance. The analysis focuses on addressing challenges related to significant volume expansion during lithiation and provides valuable insights into the Gibbs free energy, chemical potentials, and relative stability of Li0 and Li+ species. Furthermore, the study explores how Li+ ions behave in the primary and secondary phases of the anode, assessing the impact of their formation on ion diffusion. This work highlights the fundamental significance of secondary phases in shaping microstructural features that impact anode properties, elucidating their contribution to the Li diffusion pathway tortuosity, which is the primary cause of the fracture of Si anodes in Li-ion batteries.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37368262

RESUMO

We analyse the efficacy of machine learning (ML) interatomic potentials (IP) in modelling gold (Au) nanoparticles. We have explored the transferability of these ML models to larger systems and established simulation times and size thresholds necessary for accurate interatomic potentials. To achieve this, we compared the energies and geometries of large Au nanoclusters using VASP and LAMMPS and gained better understanding of the number of VASP simulation timesteps required to generate ML-IPs that can reproduce the structural properties. We also investigated the minimum atomic size of the training set necessary to construct ML-IPs that accurately replicate the structural properties of large Au nanoclusters, using the LAMMPS-specific heat of the Au147 icosahedral as reference. Our findings suggest that minor adjustments to a potential developed for one system can render it suitable for other systems. These results provide further insight into the development of accurate interatomic potentials for modelling Au nanoparticles through machine learning techniques.

4.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364667

RESUMO

We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au20 nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.

5.
Adv Mater ; 34(36): e2203849, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918607

RESUMO

Layered 2D crystals have unique properties and rich chemical and electronic diversity, with over 6000 2D crystals known and, in principle, millions of different stacked hybrid 2D crystals accessible. This diversity provides unique combinations of properties that can profoundly affect the future of energy conversion and harvesting devices. Notably, this includes catalysts, photovoltaics, superconductors, solar-fuel generators, and piezoelectric devices that will receive broad commercial uptake in the near future. However, the unique properties of layered 2D crystals are not limited to individual applications and they can achieve exceptional performance in multiple energy conversion applications synchronously. This synchronous multisource energy conversion (SMEC) has yet to be fully realized but offers a real game-changer in how devices will be produced and utilized in the future. This perspective highlights the energy interplay in materials and its impact on energy conversion, how SMEC devices can be realized, particularly through layered 2D crystals, and provides a vision of the future of effective environmental energy harvesting devices with layered 2D crystals.

6.
Chem Soc Rev ; 51(2): 650-671, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34931635

RESUMO

The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.


Assuntos
Eletricidade , Eletrônica , Estudos Prospectivos
7.
Phys Chem Chem Phys ; 21(45): 25344-25361, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701962

RESUMO

Interfacial metal-oxide systems with ultra-thin oxide layers are of high interest for their use in catalysis. The chemical activity of ultra-thin metal-oxide layers can be substantially enhanced compared to interfacial models with thicker oxide. In this study, we present a Density Functional Theory (DFT) investigation of the structure of ultra-thin rutile layers (one and two TiO2 layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti-O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti3+ cations in TiO2. The concentration of Ti3+ is proportionally higher in the ultra-thin oxide, compared to interfacial models with thicker oxide layers. The structure of the one-layer oxide slab is strongly distorted at the interface while the thicker TiO2 layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly defective interfaces. Isolated water molecules dissociate when adsorbed at the TiO2 layers. At higher coverages, the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. This behaviour is similar to that observed on thicker oxide in TiO2-TiN interfaces or pure TiO2 surfaces. In contrast, interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. The high concentration on reduced Ti3+ introduces significant distortions in the O-defective slab. Whereas, a water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO1.75-TiN interface, where the Ti3+ states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO2-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultra-thin TiO2 with potential application as photocatalytic water splitting devices.

8.
Phys Chem Chem Phys ; 20(4): 2356-2362, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308464

RESUMO

In this paper, we present a detailed study of the stoichiometric and reduced Co9S8 pentlandite magnetic properties, based on density functional theory. We analyze both its geometry and electronic properties and show that only by the inclusion of the Hubbard term it is possible to correctly describe d-d splitting, which is necessary to accurately characterize the Co9S8 spin configuration and its antiferromagnetic nature. We also analyze the effect of sulfur vacancies and predict the formation of ferromagnetic clusters that give local ferromagnetic character to non-stoichiometric Co9S8, which may explain the contradictory experimental results reported in the literature.

9.
ACS Nano ; 12(3): 2873-2882, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29365264

RESUMO

Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O2 and H2O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

10.
ACS Omega ; 3(9): 12215-12228, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459296

RESUMO

We used density functional theory approach, with the inclusion of a semiempirical dispersion potential to take into account van der Waals interactions, to investigate the water adsorption and dissociation on cobalt sulfide Co9S8 and Co3S4(100) surfaces. We first determined the nanocrystal shape and selected representative surfaces to analyze. We then calculated water adsorption and dissociation energies, as well as hydrogen and oxygen adsorption energies, and we found that sulfur vacancies on Co9S8(100) surface enhance the catalytic activity toward water dissociation by raising the energy level of unhybridized Co 3d states closer to the Fermi level. Sulfur vacancies, however, do not have a significant impact on the energetics of Co3S4(100) surface.

11.
Nanoscale ; 9(36): 13575-13582, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28876012

RESUMO

Hexagonal boron nitride (hBN) has recently emerged as a fascinating platform for room-temperature quantum photonics due to the discovery of robust visible light single-photon emitters. In order to utilize these emitters, it is necessary to have a clear understanding of their atomic structure and the associated excitation processes that give rise to this single photon emission. Here, we performed density-functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates. By applying a number of criteria on the electronic structure of the ground state and the atomic structure of the excited states of the considered defects, and then calculating the Huang-Rhys (HR) factor, we found that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor of 1.66, in good agreement with the experimental HR factor. We calculated the photoluminescence (PL) line shape for this defect and found that it reproduces a number of key features in the experimental PL lineshape.

12.
ACS Omega ; 2(10): 6795-6808, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457267

RESUMO

We use first-principles density functional theory calculations to analyze the effect of chromia nanocluster modification on TiO2 rutile (110) and anatase (101) surfaces, in which both dry/perfect and wet/hydroxylated TiO2 surfaces are considered. We show that the adsorption of chromia nanoclusters on both surfaces is favorable and results in a reduction of the energy gap due to a valence band upshift. A simple model of the photoexcited state confirms this red shift and shows that photoexcited electrons and holes will localize on the chromia nanocluster. The oxidation states of the cations show that Ti3+, Cr4+, and Cr2+ (with no Cr6+) can be present. To probe potential reactivity, the energy of oxygen vacancy formation is shown to be significantly reduced compared to that of pure TiO2 and chromia. Finally, we show that inclusion of water on the TiO2 surface, to begin inclusion of environment effects, has no notable effect on the energy gap or oxygen vacancy formation. These results help us to understand earlier experimental work on chromia-modified anatase TiO2 and demonstrate that chromia-modified TiO2 presents an interesting composite system for photocatalysis.

13.
Adv Mater ; 28(27): 5425-46, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26833714

RESUMO

Work on the design of new TiO2 based photocatalysts is described. The key concept is the formation of composite structures through the modification of anatase and rutile TiO2 with molecular-sized nanoclusters of metal oxides. Density functional theory (DFT) level simulations are compared with experimental work synthesizing and characterizing surface modified TiO2 . DFT calculations are used to show that nanoclusters of metal oxides such as TiO2 , SnO/SnO2 , PbO/PbO2 , ZnO and CuO are stable when adsorbed at rutile and anatase surfaces, and can lead to a significant red shift in the absorption edge which will induce visible light absorption; this is the first requirement for a useful photocatalyst. The origin of the red shift and the fate of excited electrons and holes are determined. For p-block metal oxides the oxidation state of Sn and Pb can be used to modify the magnitude of the red shift and its mechanism. Comparisons of recent experimental studies of surface modified TiO2 that validate our DFT simulations are described. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with a correct choice of nanocluster modified can be applied to other reactions.

14.
J Phys Condens Matter ; 28(7): 074006, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808905

RESUMO

In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction.

15.
Phys Chem Chem Phys ; 11(40): 9188-99, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19812840

RESUMO

We present a density functional theory investigation of the interaction between water and cerium oxide surfaces, considering both the stoichiometric and the reduced surfaces. We study the atomic structure and energetics of various configurations of water adsorption (for a water coverage of 0.25 ML) and account for the effect of temperature and pressure of the environment, containing both oxygen and water vapor, employing the ab initio atomistic thermodynamics approach. Through our investigation, we obtain the phase diagram of the water-ceria system, which enables us to discuss the stability of various surface structures as a function of the ambient conditions. For the stoichiometric surface, we find that the most stable configuration for water is when it is bonded at the cerium site, involving two O-H bonds of hydrogen and oxygen atoms at the surface. If oxygen vacancies are introduced at the surface, which is predicted under more reducing conditions, the binding energy of water is stronger, indicating an effective attractive interaction between water molecules and oxygen vacancies. Water dissociation, and the associated activation energies, are studied, and the role of oxygen vacancies is found to be crucial to stabilize the dissociated fragments. We present a detailed analysis of the stability of the water-ceria system as a function of the ambient conditions, and focus on two important surface processes: water adsorption/desorption on the stoichiometric surface and oxygen vacancy formation in the presence of water vapor. A study of the vibrational contribution to the free energy allows us to estimate the effect of this term on the stability range of adsorbed water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...