Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(1): 144-150, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538016

RESUMO

The influence of protein motions on enzyme catalysis remains a topic of active discussion. Protein motions occur across a variety of time scales, from vibrational fluctuations in femtoseconds, to collective motions in milliseconds. There have been numerous studies that show conformational motions may assist in catalysis, protein folding, and substrate specificity. It is also known through transition path sampling studies that rapid promoting vibrations contribute to enzyme catalysis. Human purine nucleoside phosphorylase (PNP) is one enzyme that contains both an important conformational motion and a rapid promoting vibration. The slower motion in this enzyme is associated with a loop motion, that when open allows substrate entry and product release but closes over the active site during catalysis. We examine the differences between an unconstrained PNP structure and a PNP structure with constraints on the loop motion. To investigate possible coupling between the slow and fast protein dynamics, we employed transition path sampling, reaction coordinate identification, electric field calculations, and free energy calculations reported here.


Assuntos
Proteínas , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Sítios de Ligação , Conformação Proteica , Movimento (Física) , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...