Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 111: 56-64, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336422

RESUMO

Peloso et al. (2015: PELOSO) published a comprehensive phylogenetic study of the frog family Microhylidae, which resulted in the discovery that several taxa were not monophyletic. To remedy this, a series of nomenclatural changes were proposed (several generic synonymies and two new subfamilies named). A recent study published in this journal by Scherz et al. (2016: SCHERZ), provided a novel phylogeny for the Malagasy subfamily Cophylinae. SCHERZ dispute the analyses and taxonomic conclusions of PELOSO. Their study is, however, based on substantial reduction of data from the PELOSO study, limited addition of new data, and different analytical methods. In spite of the fact that their own results are consistent with the taxonomy of PELOSO, SCHERZ reject that conservative taxonomy and suggest the revalidation of Platypelis (from the synonymy of Cophyla), the revalidation of Stumpffia (from the synonymies of Rhombophryne), and the creation of at least two new genera (only one named therein). In doing so, SCHERZ accept the recognition of likely paraphyletic taxa, with Stumpffia paraphyletic in their parsimony analysis. Herein, we provide a response to several points raised in SCHERZ: (1) we discuss issues with their interpretation (and selective use) of available phylogenetic and phenotypic evidence; (2) and provide a new phylogenetic analysis of all the data in PELOSO and SCHERZ combined. In the new analysis Stumpffia is paraphyletic with respect to Rhombophryne, whereas Cophyla and Platypelis are both monophyletic and sister taxa. We provide a case for the use of the taxonomy suggested in PELOSO.


Assuntos
Anuros/classificação , Filogenia , Terminologia como Assunto , Animais , Sequência Consenso , Funções Verossimilhança
2.
Cladistics ; 32(6): 624-671, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34727678

RESUMO

We infer phylogenetic relationships within Teioidea, a superfamily of Nearctic and Neotropical lizards, using nucleotide sequences. Phylogenetic analyses relied on parsimony under tree-alignment and similarity-alignment, with length variation (i.e. gaps) treated as evidence and as absence of evidence, and maximum-likelihood under similarity-alignment with gaps as absence of evidence. All analyses produced almost completely resolved trees despite 86% of missing data. Tree-alignment produced the shortest trees, the strict consensus of which is more similar to the maximum-likelihood tree than to any of the other parsimony trees, in terms of both number of clades shared, parsimony cost and likelihood scores. Comparisons of tree costs suggest that the pattern of indels inferred by similarity-alignment drove parsimony analyses on similarity-aligned sequences away from more optimal solutions. All analyses agree in a majority of clades, although they differ from each other in unique ways, suggesting that neither the criterion of optimality, alignment nor treatment of indels alone can explain all differences. Parsimony rejects the monophyly of Gymnophthalmidae due to the position of Alopoglossinae relative to Teiidae, whereas support of Gymnophthalmidae by maximum-likelihood was low. We address various nomenclatural issues, including Gymnophthalmidae Fitzinger, 1826 being an older name than Teiidae Gray, 1827. We recognize three families in the arrangement Alopoglossidae + (Teiidae + Gymnophthalmidae). Within Gymnophthalmidae we recognize Cercosaurinae, Gymnophthalminae, Rhachisaurinae and Riolaminae in the relationship Cercosaurinae + (Rhachisaurinae + (Riolaminae + Gymnophthalminae)). Cercosaurinae is composed of three tribes-Bachiini, Cercosaurini and Ecpleopodini-and Gymnophthalminae is composed of three-Gymnophthalmini, Heterodactylini and Iphisini. Within Teiidae we retain the currently recognized three subfamilies in the arrangement: Callopistinae + (Tupinambinae + Teiinae). We also propose several genus-level changes to restore the monophyly of taxa.

3.
Cladistics ; 32(2): 113-140, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34732021

RESUMO

Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfamilies remain largely unstable and many genera are not demonstrably monophyletic. Here, we used five alternative combinations of DNA sequence data (ranging from seven loci for 48 taxa to up to 73 loci for as many as 142 taxa) generated using the anchored phylogenomics sequencing method (66 loci, derived from conserved genome regions, for 48 taxa) and Sanger sequencing (seven loci for up to 142 taxa) to tackle this problem. We assess the effects of character sampling, taxon sampling, analytical methods and assumptions in phylogenetic inference of microhylid frogs. The phylogeny of microhylids shows high susceptibility to different analytical methods and datasets used for the analyses. Clades inferred from maximum-likelihood are generally more stable across datasets than those inferred from parsimony. Parsimony trees inferred within a tree-alignment framework are generally better resolved and better supported than those inferred within a similarity-alignment framework, even under the same cost matrix (equally weighted) and same treatment of gaps (as a fifth nucleotide state). We discuss potential causes for these differences in resolution and clade stability among discovery operations. We also highlight the problem that commonly used algorithms for model-based analyses do not explicitly model insertion and deletion events (i.e. gaps are treated as missing data). Our results corroborate the monophyly of Microhylidae and most currently recognized subfamilies but fail to provide support for relationships among subfamilies. Several taxonomic updates are provided, including naming of two new subfamilies, both monotypic.

4.
Zootaxa ; 4004: 1-75, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26623754

RESUMO

Egg-brooding frogs (Hemiphractidae) are a group of 105 currently recognized Neotropical species, with a remarkable diversity of developmental modes, from direct development to free-living and exotrophic tadpoles. Females carry their eggs on the back and embryos have unique bell-shaped gills. We inferred the evolutionary relationships of these frogs and used the resulting phylogeny to review their taxonomy and test hypotheses on the evolution of developmental modes and bell-shaped gills. Our inferences relied on a total evidence parsimony analysis of DNA sequences of up to 20 mitochondrial and nuclear genes (analyzed under tree-alignment), and 51 phenotypic characters sampled for 83% of currently valid hemiphractid species. Our analyses rendered a well-resolved phylogeny, with both Hemiphractidae (sister of Athesphatanura) and its six recognized genera being monophyletic. We also inferred novel intergeneric relationships [((Cryptobatrachus, Flectonotus), (Stefania, (Fritziana, (Hemiphractus, Gastrotheca))))], the non-monophyly of all species groups previously proposed within Gastrotheca and Stefania, and the existence of several putative new species within Fritziana and Hemiphractus. Contrary to previous hypotheses, our results support the most recent common ancestor of hemiphractids as a direct-developer. Free-living aquatic tadpoles apparently evolved from direct-developing ancestors three to eight times. Embryos of the sister taxa Cryptobatrachus and Flectonotus share a pair of single gills derived from branchial arch I, while embryos of the clade including the other four genera have two pairs of gills derived from branchial arches I and II respectively. Furthermore, in Gastrotheca the fusion of the two pairs of gills is a putative synapomorphy. We propose a revised taxonomy concordant with our optimal topologies.


Assuntos
Anuros/classificação , Evolução Biológica , Filogenia , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Anuros/anatomia & histologia , Anuros/genética , Anuros/crescimento & desenvolvimento , Tamanho Corporal , Feminino , Masculino , Dados de Sequência Molecular , Tamanho do Órgão
5.
Zootaxa ; 3825: 1-132, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24989881

RESUMO

Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates that insertions and deletions occurred in twice as many aligned positions as implied by the optimal similarity-alignment, confirming previous findings that sequence turnover through insertion and deletion events plays a greater role in molecular evolution than indicated by similarity-alignments. Our results also provide a clear empirical demonstration of the different effects of wildcard taxa produced by missing data in parsimony and maximum likelihood analyses. Specifically, maximum likelihood analyses consistently (81% bootstrap frequency) provided spurious resolution despite a lack of evidence, whereas parsimony correctly depicted the ambiguity due to missing data by collapsing unsupported nodes. We provide a new taxonomy for the group that retains previously recognized Linnaean taxa except for Ceuthomantidae, Strabomantidae, and Strabomantinae. A phenotypically diagnosable superfamily is recognized formally as Brachycephaloidea, with the informal, unranked name terrarana retained as the standard common name for these frogs. We recognize three families within Brachycephaloidea that are currently diagnosable solely on molecular grounds (Brachycephalidae, Craugastoridae, and Eleutherodactylidae), as well as five subfamilies (Craugastorinae, Eleutherodactylinae, Holoadeninae, Phyzelaphryninae, and Pristimantinae) corresponding in large part to previous families and subfamilies. Our analyses upheld the monophyly of all tested genera, but we found numerous subgeneric taxa to be non-monophyletic and modified the taxonomy accordingly.


Assuntos
Anuros/genética , Classificação/métodos , Alinhamento de Sequência/métodos , Animais , Anuros/classificação , Evolução Molecular , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...