Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939502

RESUMO

Hyperspectral imaging (HSI) is a promising technology for environmental monitoring with a lot of undeveloped potential due to the high dimensionality and complexity of the data. If temporal effects are studied, such as in a monitoring context, the analysis becomes more challenging as time is added to the dimensions of space (image coordinates) and wavelengths. We conducted a series of laboratory experiments to investigate the impact of different stressor exposure patterns on the spectrum of the cold water coral Desmophyllum pertusum. 65 coral samples were divided into 12 groups, each group being exposed to different types and levels of particles. Hyperspectral images of the coral samples were collected at four time points from prior to exposure to 6 weeks after exposure. To investigate the relationships between the corals' spectral signatures and controlled experimental parameters, a new software tool for interactive visual exploration was developed and applied, the HypIX (Hyperspectral Image eXplorer) web tool. HypIX combines principles from exploratory data analysis, information visualization and machine learning-based dimension reduction. This combination enables users to select regions of interest (ROI) in all dimensions (2D space, time point and spectrum) for a flexible integrated inspection. We propose two HypIX workflows to find relationships in time series of hyperspectral datasets, namely morphology-based filtering workflow and embedded driven response analysis workflow. With these HypIX workflows three users identified different temporal and spatial patterns in the spectrum of corals exposed to different particle stressor conditions. Corals exposed to particles tended to have a larger change rate than control corals, which was evident as a shifted spectrum. The responses, however, were not uniform for coral samples undergoing the same exposure treatments, indicating individual tolerance levels. We also observed a good inter-observer agreement between the three HyPIX users, indicating that the proposed workflow can be applied to obtain reproducible HSI analysis results.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Monitoramento Ambiental , Aprendizado de Máquina , Fatores de Tempo , Água
2.
Integr Environ Assess Manag ; 4(2): 171-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18494116

RESUMO

This paper briefly summarizes the ERMS project and presents the developed model by showing results from environmental fates and risk calculations of a discharge from offshore drilling operations. The developed model calculates environmental risks for the water column and sediments resulting from exposure to toxic stressors (e.g., chemicals) and nontoxic stressors (e.g., suspended particles, sediment burial). The approach is based on existing risk assessment techniques described in the European Union technical guidance document on risk assessment and species sensitivity distributions. The model calculates an environmental impact factor, which characterizes the overall potential impact on the marine environment in terms of potentially impacted water volume and sediment area. The ERMS project started in 2003 and was finalized in 2007. In total, 28 scientific reports and 9 scientific papers have been delivered from the ERMS project (http://www.sintef.no/erms).


Assuntos
Indústrias Extrativas e de Processamento , Petróleo , Medição de Risco/métodos , Poluentes da Água/toxicidade , Meio Ambiente , Sedimentos Geológicos , Água do Mar
3.
Integr Environ Assess Manag ; 4(2): 177-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18232721

RESUMO

In order to improve the ecological status of aquatic systems, both toxic (e.g., chemical) and nontoxic stressors (e.g., suspended particles) should be evaluated. This paper describes an approach to environmental risk assessment of drilling discharges to the sea. These discharges might lead to concentrations of toxic compounds and suspended clay particles in the water compartment and concentrations of toxic compounds, burial of biota, change in sediment structure, and oxygen depletion in marine sediments. The main challenges were to apply existing protocols for environmental risk assessment to nontoxic stressors and to combine risks arising from exposure to these stressors with risk from chemical exposure. The defined approach is based on species sensitivity distributions (SSDs). In addition, precautionary principles from the EU-Technical Guidance Document were incorporated to assure that the method is acceptable in a regulatory context. For all stressors a protocol was defined to construct an SSD for no observed effect concentrations (or levels; NOEC(L)-SSD) to allow for the calculation of the potentially affected fraction of species from predicted exposures. Depending on the availability of data, a NOEC-SSD for toxicants can either be directly based on available NOECs or constructed from the predicted no effect concentration and the variation in sensitivity among species. For nontoxic stressors a NOEL-SSD can be extrapolated from an SSD based on effect or field data. Potentially affected fractions of species at predicted exposures are combined into an overall risk estimate. The developed approach facilitates environmental management of drilling discharges and can be applied to define risk-mitigating measures for both toxic and nontoxic stress.


Assuntos
Indústrias Extrativas e de Processamento , Petróleo , Medição de Risco/métodos , Poluentes da Água , Sedimentos Geológicos , Nível de Efeito Adverso não Observado , Água do Mar , Poluentes da Água/toxicidade
4.
Integr Environ Assess Manag ; 4(2): 194-203, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18232741

RESUMO

Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.


Assuntos
Indústrias Extrativas e de Processamento , Modelos Teóricos , Petróleo , Medição de Risco/métodos , Poluentes da Água , Exposição Ambiental , Sedimentos Geológicos , Água do Mar , Poluentes da Água/toxicidade
5.
Integr Environ Assess Manag ; 4(2): 204-14, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18232742

RESUMO

In order to achieve the offshore petroleum industries "zero harm" goal to the environment, the environmental impact factor for drilling discharges was developed as a tool to identify and quantify the environmental risks associated with disposal of drilling discharges to the marine environment. As an initial step in this work the main categories of substances associated with drilling discharges and assumed to contribute to toxic or nontoxic stress were identified and evaluated for inclusion in the risk assessment. The selection were based on the known toxicological properties of the substances, or the total amount discharged together with their potential for accumulation in the water column or sediments to levels that could be expected to cause toxic or nontoxic stress to the biota. Based on these criteria 3 categories of chemicals were identified for risk assessment the water column and sediments: Natural organic substances, metals, and drilling fluid chemicals. Several approaches for deriving the environmentally safe threshold concentrations as predicted no effect concentrations were evaluated in the process. For the water column consensus were reached for using the species sensitivity distribution approach for metals and the assessment factor approach for natural organic substances and added drilling chemicals. For the sediments the equilibrium partitioning approach was selected for all three categories of chemicals. The theoretically derived sediment quality criteria were compared to field-derived threshold effect values based on statistical approaches applied on sediment monitoring data from the Norwegian Continental Shelf. The basis for derivation of predicted no effect concentration values for drilling discharges should be consistent with the principles of environmental risk assessment as described in the Technical Guidance Document on Risk Assessment issued by the European Union.


Assuntos
Indústrias Extrativas e de Processamento , Metais/normas , Compostos Orgânicos/normas , Petróleo , Medição de Risco , Poluentes da Água/normas , Animais , Meio Ambiente , Sedimentos Geológicos , Metais/toxicidade , Nível de Efeito Adverso não Observado , Compostos Orgânicos/toxicidade , Poluentes da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...