Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 32(5): 465-476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103995

RESUMO

Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.


Assuntos
Dictyostelium , Metais , Fagocitose , Metais/metabolismo , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Evolução Biológica , Acanthamoeba , Animais , Fagossomos/metabolismo , Zinco/metabolismo , Metaloides/metabolismo , Cobre/metabolismo , Disponibilidade Biológica , Mitocôndrias/metabolismo
2.
Nat Commun ; 14(1): 8418, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110448

RESUMO

Marine sedimentary rocks deposited across the Neoproterozoic Cryogenian Snowball interval, ~720-635 million years ago, suggest that post-Snowball fertilization of shallow continental margin seawater with phosphorus accelerated marine primary productivity, ocean-atmosphere oxygenation, and ultimately the rise of animals. However, the mechanisms that sourced and delivered bioavailable phosphate from land to the ocean are not fully understood. Here we demonstrate a causal relationship between clay mineral production by the melting Sturtian Snowball ice sheets and a short-lived increase in seawater phosphate bioavailability by at least 20-fold and oxygenation of an immediate post-Sturtian Snowball ocean margin. Bulk primary sediment inputs and inferred dissolved seawater phosphate dynamics point to a relatively low marine phosphate inventory that limited marine primary productivity and seawater oxygenation before the Sturtian glaciation, and again in the later stages of the succeeding interglacial greenhouse interval.

3.
Environ Geochem Health ; 42(9): 2975-3013, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32112338

RESUMO

Hydro-geochemical data are required for understanding of water quality, provenance, and chemical composition for the 2,117,700 km2 Niger River Basin. This study presents hydro-geochemical analysis of the Benue River Basin, a major tributary of the Niger River. The distribution of major ions, Si, δD, and δ18O, trace and rare-earth elements (TE and REEs, respectively) composition in 86 random water samples, revealed mixing of groundwater with surface water to recharge shallow aquifers by July and September rains. Equilibration of groundwater with kaolinite and montmorillonites, by incongruent dissolution, imprints hydro-chemical signatures that vary from Ca + Mg - NO3 in shallow wells to Na + K - HCO3 in boreholes and surface waters, with undesirable concentrations of fluoride identified as major source of fluorosis in the local population. Our results further indicate non-isochemical dissolution of local rocks by water, with springs, wells and borehole waters exhibiting surface water-gaining, weakest water-rock interaction, and strongest water-rock interaction processes, respectively. Poorly mobile elements (Al, Th and Fe) are preferentially retained in the solid residue of incongruent dissolution, while alkalis, alkaline earth and oxo-anion-forming elements (U, Mo, Na, K, Rb, Ca, Li, Sr, Ba, Zn, Pb) are more mobile and enriched in the aqueous phase, whereas transition metals display an intermediate behavior. Trace elements vary in the order of Ba > Sr > Zn > Li > V > Cu > Ni > Co > As > Cr > Sc > Ti > Be > Pb > Cd, with potentially harmful elements such as Cd, As, and Pb mobilized in acidic media attaining near-undesirable levels in populated localities. With the exception of Y, REEs distribution in groundwater in the order of Eu > Sm > Ce > Nd > La > Gd > Pr > Dy > Er > Yb > Ho > Tb > Tm differs slightly with surface water composition. Post-Archean Average Australian Shale-normalized REEs patterns ranging from 1.08 to 199 point to the dissolution of silicates as key sources of trace elements to groundwater, coupled to deposition by eolian dust.


Assuntos
Água Subterrânea/química , Metais Terras Raras/análise , Oligoelementos/análise , Camarões , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Humanos , Caulim/química , Isótopos de Oxigênio/análise , Saúde Pública , Rios/química , Poços de Água
4.
Biogeochemistry ; 141(1): 41-62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956374

RESUMO

The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothermal fluids containing up to 3000 times more As than present in seawater. We propose that the removal of dissolved As and phosphorus (P) by sulfide and Fe(III)(oxyhydr)oxide minerals during sediment-seawater interaction, produces nutrient-deficient porewaters containing < 2.0 ppb P. The porewater arsenite-As(III) to arsenate-As(V) ratios, combined with sulfide concentration in the sediment and/or porewater, suggest a hydrothermally-induced seafloor redox gradient. This gradient overlaps with changing high affinity phosphate uptake gene abundance. High affinity phosphate uptake and As cycling genes are depleted in the sulfide-rich settings, relative to the more oxidizing habitats where mainly Fe(III)(oxyhydr)oxides are precipitated. In addition, a habitat-wide low As-respiring and As-oxidizing gene content relative to As resistance gene richness, suggests that As detoxification is prioritized over metabolic As cycling in the sediments. Collectively, the data point to redox control on Fe and S mineralization as a decisive factor in the regulation of high affinity phosphate uptake and As cycling gene content in shallow submarine hydrothermal ecosystems along the HVA.

5.
Sci Rep ; 7(1): 14708, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089625

RESUMO

The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.

6.
Sci Rep ; 5: 17789, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635187

RESUMO

Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.


Assuntos
Arsênio/isolamento & purificação , Evolução Biológica , Sedimentos Geológicos/química , Oxigênio/química , Arsênio/química , Atmosfera , Camada de Gelo , Oceanos e Mares , Oxirredução , Radiação , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA