Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7505, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980401

RESUMO

Moth sex pheromones are a classical model for studying sexual selection. Females typically produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identify enzymes involved in acetate degradation using two closely related moth species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which have different quantities of acetate esters in their sex pheromone. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we show that two lipases and two esterases from H. virescens reduce the levels of pheromone acetate esters when expressed in H. subflexa females. Together, our results show that lipases and carboxylesterases are involved in tuning Lepidoptera pheromones composition.


Assuntos
Mariposas , Atrativos Sexuais , Masculino , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Feromônios/metabolismo , Lipase/metabolismo , Acetatos/metabolismo
2.
Ecol Evol ; 12(5): e8941, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646318

RESUMO

Sexual signals are important in speciation, but understanding their evolution is complex as these signals are often composed of multiple, genetically interdependent components. To understand how signals evolve, we thus need to consider selection responses in multiple components and account for the genetic correlations among components. One intriguing possibility is that selection changes the genetic covariance structure of a multicomponent signal in a way that facilitates a response to selection. However, this hypothesis remains largely untested empirically. In this study, we investigate the evolutionary response of the multicomponent female sex pheromone blend of the moth Heliothis subflexa to 10 generations of artificial selection. We observed a selection response of about three-quarters of a phenotypic standard deviation in the components under selection. Interestingly, other pheromone components that are biochemically and genetically linked to the components under selection did not change. We also found that after the onset of selection, the genetic covariance structure diverged, resulting in the disassociation of components under selection and components not under selection across the first two genetic principle components. Our findings provide rare empirical support for an intriguing mechanism by which a sexual signal can respond to selection without possible constraints from indirect selection responses.

3.
Evol Lett ; 3(1): 80-92, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788144

RESUMO

Theory and empirical data showed that two processes can boost selection against deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, by enhancing the relative reproductive success of males with small mutation loads. These processes tend to be mutually exclusive because sexual selection is reduced under mating systems that promote inbreeding, such as self-fertilization in hermaphrodites. We estimated the relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we generated lines that were exposed to various intensities of inbreeding, sexual selection (on the male function), and nonsexual selection (on the female function). We measured how these regimes affected the mutation load, quantified through the survival of outcrossed and selfed juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced male selection, but not when female selection was relaxed, showing that male-specific sexual selection does purge deleterious mutations. However, in lines exposed to inbreeding, where sexual selection was also relaxed, survival did not decrease, and even increased for self-fertilized juveniles, showing that purging through inbreeding can compensate for the absence of sexual selection. Our results point to the further question of whether a mixed strategy combining the advantages of both mechanisms of genetic purging could be evolutionary stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...