Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 3(1): 31, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823379

RESUMO

BACKGROUND: Identification of pathogens is crucial to efficiently treat and prevent bacterial infections. However, existing diagnostic techniques are slow or have a too low resolution for well-informed clinical decisions. METHODS: In this study, we have developed an optical DNA mapping-based method for strain-level bacterial typing and simultaneous plasmid characterisation. For the typing, different taxonomical resolutions were examined and cultivated pure Escherichia coli and Klebsiella pneumoniae samples were used for parameter optimization. Finally, the method was applied to mixed bacterial samples and uncultured urine samples from patients with urinary tract infections. RESULTS: We demonstrate that optical DNA mapping of single DNA molecules can identify Escherichia coli and Klebsiella pneumoniae at the strain level directly from patient samples. At a taxonomic resolution corresponding to E. coli sequence type 131 and K. pneumoniae clonal complex 258 forming distinct groups, the average true positive prediction rates are 94% and 89%, respectively. The single-molecule aspect of the method enables us to identify multiple E. coli strains in polymicrobial samples. Furthermore, by targeting plasmid-borne antibiotic resistance genes with Cas9 restriction, we simultaneously identify the strain or subtype and characterize the corresponding plasmids. CONCLUSION: The optical DNA mapping method is accurate and directly applicable to polymicrobial and clinical samples without cultivation. Hence, it has the potential to rapidly provide comprehensive diagnostics information, thereby optimizing early antibiotic treatment and opening up for future precision medicine management.


For bacterial infections, it is important to rapidly and accurately identify and characterize the type of bacteria involved so that optimal antibiotic treatment can be given quickly to the patient. However, current diagnostic methods are sometimes slow and cannot be used for mixtures of bacteria. We have, therefore, developed a method to identify bacteria directly from patient samples. The method was tested on two common species of disease-causing bacteria ­ Escherichia coli and Klebsiella pneumoniae ­ and it could correctly identify the bacterial strain or subtype in both urine samples and mixtures. Hence, the method has the potential to provide fast diagnostic information for choosing the most suited antibiotic, thereby reducing the risk of death and suffering.

2.
Q Rev Biophys ; 55: e12, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203227

RESUMO

Nanofluidic structures have over the last two decades emerged as a powerful platform for detailed analysis of DNA on the kilobase pair length scale. When DNA is confined to a nanochannel, the combination of excluded volume and DNA stiffness leads to the DNA being stretched to near its full contour length. Importantly, this stretching takes place at equilibrium, without any chemical modifications to the DNA. As a result, any DNA can be analyzed, such as DNA extracted from cells or circular DNA, and it is straight-forward to study reactions on the ends of linear DNA. In this comprehensive review, we first give a thorough description of the current understanding of the polymer physics of DNA and how that leads to stretching in nanochannels. We then describe how the versatility of nanofabrication can be used to design devices specifically tailored for the problem at hand, either by controlling the degree of confinement or enabling facile exchange of reagents to measure DNA-protein reaction kinetics. The remainder of the review focuses on two important applications of confining DNA in nanochannels. The first is optical DNA mapping, which provides the genomic sequence of intact DNA molecules in excess of 100 kilobase pairs in size, with kilobase pair resolution, through labeling strategies that are suitable for fluorescence microscopy. In this section, we highlight solutions to the technical aspects of genomic mapping, including the use of enzyme-based labeling and affinity-based labeling to produce the genomic maps, rather than recent applications in human genetics. The second is DNA-protein interactions, and several recent examples of such studies on DNA compaction, filamentous protein complexes, and reactions with DNA ends are presented. Taken together, these two applications demonstrate the power of DNA confinement and nanofluidics in genomics, molecular biology, and biophysics.


Assuntos
DNA , Polímeros , Humanos , DNA/genética , Microscopia de Fluorescência , Mapeamento Cromossômico , Genômica , Nanotecnologia
3.
PLoS One ; 16(11): e0259670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34739528

RESUMO

Large-scale genomic alterations play an important role in disease, gene expression, and chromosome evolution. Optical DNA mapping (ODM), commonly categorized into sparsely-labelled ODM and densely-labelled ODM, provides sequence-specific continuous intensity profiles (DNA barcodes) along single DNA molecules and is a technique well-suited for detecting such alterations. For sparsely-labelled barcodes, the possibility to detect large genomic alterations has been investigated extensively, while densely-labelled barcodes have not received as much attention. In this work, we introduce HMMSV, a hidden Markov model (HMM) based algorithm for detecting structural variations (SVs) directly in densely-labelled barcodes without access to sequence information. We evaluate our approach using simulated data-sets with 5 different types of SVs, and combinations thereof, and demonstrate that the method reaches a true positive rate greater than 80% for randomly generated barcodes with single variations of size 25 kilobases (kb). Increasing the length of the SV further leads to larger true positive rates. For a real data-set with experimental barcodes on bacterial plasmids, we successfully detect matching barcode pairs and SVs without any particular assumption of the types of SVs present. Instead, our method effectively goes through all possible combinations of SVs. Since ODM works on length scales typically not reachable with other techniques, our methodology is a promising tool for identifying arbitrary combinations of genomic alterations.


Assuntos
Código de Barras de DNA Taxonômico , Cadeias de Markov
4.
PLoS One ; 16(2): e0247058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635888

RESUMO

Carbapenem-resistant Klebsiella pneumoniae are a major global threat in healthcare facilities. The propagation of carbapenem resistance determinants can occur through vertical transmission, with genetic elements being transmitted by the host bacterium, or by horizontal transmission, with the same genetic elements being transferred among distinct bacterial hosts. This work aimed to track carbapenem resistance transmission by K. pneumoniae in a healthcare facility. The study involved a polyphasic approach based on conjugation assays, resistance phenotype and genotype analyses, whole genome sequencing, and plasmid characterization by pulsed field gel electrophoresis and optical DNA mapping. Out of 40 K. pneumoniae clinical isolates recovered over two years, five were carbapenem- and multidrug-resistant and belonged to multilocus sequence type ST147. These isolates harboured the carbapenemase encoding blaKPC-3 gene, integrated in conjugative plasmids of 140 kbp or 55 kbp, belonging to replicon types incFIA/incFIIK or incN/incFIIK, respectively. The two distinct plasmids encoding the blaKPC-3 gene were associated with distinct genetic lineages, as confirmed by optical DNA mapping and whole genome sequence analyses. These results suggested vertical (bacterial strain-based) transmission of the carbapenem-resistance genetic elements. Determination of the mode of transmission of antibiotic resistance in healthcare facilities, only possible based on polyphasic approaches as described here, is essential to control resistance propagation.


Assuntos
Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , Antibacterianos/toxicidade , Carbapenêmicos/toxicidade , Conjugação Genética , Evolução Molecular , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade
5.
Chemosphere ; 220: 748-759, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30611073

RESUMO

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative and two of these, pH1FC54_330 and pH1FC54_140, contained metal and antibiotic resistance genes. Transconjugants obtained in the absence or presence of tellurite (0.5 µM or 5 µM), arsenite (0.5 µM, 5 µM or 15 µM) or ceftazidime (10 mg/L) and selected in the presence of sodium azide (100 mg/L) and tetracycline (16 mg/L) presented distinct phenotypes, associated with the acquisition of different plasmid combinations, including two co-integrate plasmids, of 310 kbp and 517 kbp. The variable composition of the conjugative plasmidome, the formation of co-integrates during conjugation, as well as the transfer of non-transferable plasmids via co-integration, and the possible association between antibiotic, arsenite and tellurite tolerance was demonstrated. These evidences bring interesting insights into the comprehension of the molecular and physiological mechanisms that underlie antibiotic resistance propagation in the environment.


Assuntos
Escherichia coli/genética , Variação Genética , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos , Eletroforese em Gel de Campo Pulsado , Escherichia coli/isolamento & purificação , Transferência Genética Horizontal , Hospitais , Metais/farmacologia , Plasmídeos/genética
6.
Integr Biol (Camb) ; 9(8): 650-661, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28660960

RESUMO

DNA-protein interactions are at the core of the cellular machinery and single molecule methods have revolutionized the possibilities to study, and our understanding of these interactions on the molecular level. Nanofluidic channels have been extensively used for studying single DNA molecules during the last twelve years and in this review, we discuss how this experimental platform has been extended to studies of DNA-protein interactions. We first present how the design of the device can be tailored for the specific DNA-protein system studied and how the channels can be passivated to avoid non-specific binding of proteins. We then focus on describing the different kinds of DNA-interacting proteins that have been studied in nanofluidic devices, including proteins that compact DNA and proteins that form filaments on DNA. Our main objective is to highlight the diverse functionalities of DNA-protein systems that have been characterized using nanofluidic structures and hence demonstrate the versatility of these experimental tools. We finally discuss potential future directions studies of DNA-protein complexes in nanochannels might take, including specific DNA-protein systems that are difficult to analyze with traditional techniques, devices with increased complexity, and fully integrated lab-on-a-chip devices for analysis of material extracted from (single) cells.


Assuntos
DNA/química , DNA/metabolismo , Técnicas Analíticas Microfluídicas , Proteínas/química , Proteínas/metabolismo , Dispositivos Lab-On-A-Chip , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Ligação Proteica , Imagem Individual de Molécula/métodos
7.
Sci Rep ; 6: 37938, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905467

RESUMO

Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Plasmídeos/genética , Sistemas CRISPR-Cas , Mapeamento Cromossômico , DNA Bacteriano/genética , Nanotecnologia , RNA Guia de Cinetoplastídeos/genética , Imagem Individual de Molécula
8.
Langmuir ; 32(33): 8403-12, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27479732

RESUMO

RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.

9.
Nucleic Acids Res ; 44(15): 7219-27, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27131370

RESUMO

The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.


Assuntos
Bacteriófago P2/química , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nanotecnologia/métodos , Imagem Individual de Molécula/métodos , Proteínas Virais/química , Proteínas Virais/metabolismo , Cristalografia por Raios X , DNA Viral/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Microscopia de Força Atômica , Microscopia de Fluorescência , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Nanotecnologia/instrumentação , Imagem Individual de Molécula/instrumentação , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
10.
J Phys Chem B ; 118(41): 11895-904, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197950

RESUMO

Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59 bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film deformation allows comparative studies of two or more analytes using the same DNA layer as demonstrated here by spermine and spermidine.


Assuntos
DNA/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Rad51 Recombinase/química , Espermidina/química , Espermina/química , Técnicas Biossensoriais/métodos , Cátions/química , Modelos Químicos , Modelos Genéticos , Conformação de Ácido Nucleico , Substâncias Viscoelásticas/química , Viscosidade , Água/química
11.
Small ; 10(5): 884-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24382826

RESUMO

A method to investigate physical properties of a DNA-protein complex in solution is demonstrated. By using tapered nanochannels and lipid passivation the persistence length of a RecA filament formed on double-stranded DNA is determined to 1.15 µm, in agreement with the literature, without attaching protein or DNA to any handles or surfaces.


Assuntos
Fenômenos Biofísicos , DNA/química , Microfluídica/métodos , Nanotecnologia/métodos , Recombinases Rec A/química , DNA Circular/metabolismo
12.
Anal Biochem ; 443(2): 261-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23994563

RESUMO

Low throughput is an inherent problem associated with most single-molecule biophysical techniques. We have developed a versatile tool for high-throughput analysis of DNA and DNA-binding molecules by combining microfluidic and dense DNA arrays. We use an easy-to-process microfluidic flow channel system in which dense DNA arrays are prepared for simultaneous imaging of large amounts of DNA molecules with single-molecule resolution. The Y-shaped microfluidic design, where the two inlet channels can be controlled separately and precisely, enables the creation of a concentration gradient across the microfluidic channel as well as rapid and repeated addition and removal of substances from the measurement region. A DNA array stained with the fluorescent DNA-binding dye YOYO-1 in a gradient manner illustrates the method and serves as a proof of concept. We have applied the method to studies of the repair protein Rad51 and could directly probe the concentration-dependent DNA-binding behavior of human Rad51 (HsRad51). In the low-concentration regime used (100 nM HsRad51 and below), we detected binding to double-stranded DNA (dsDNA) without positive cooperativity.


Assuntos
Benzoxazóis/análise , DNA/metabolismo , Corantes Fluorescentes/análise , Técnicas Analíticas Microfluídicas/instrumentação , Compostos de Quinolínio/análise , Rad51 Recombinase/metabolismo , Benzoxazóis/metabolismo , Desenho de Equipamento , Corantes Fluorescentes/metabolismo , Humanos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Compostos de Quinolínio/metabolismo
13.
Nucleic Acids Res ; 40(11): 4904-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362735

RESUMO

Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.


Assuntos
Cálcio/química , DNA de Cadeia Simples/química , Rad51 Recombinase/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Cátions Bivalentes/química , DNA de Cadeia Simples/metabolismo , Humanos , Magnésio/química , Modelos Moleculares , Rad51 Recombinase/metabolismo , Recombinação Genética
14.
Chem Commun (Camb) ; 46(43): 8231-3, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20877908

RESUMO

DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology.


Assuntos
DNA/química , Polietilenoglicóis/química , Catálise , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Conformação de Ácido Nucleico , Transição de Fase , Soluções/química , Temperatura de Transição
15.
Proc Natl Acad Sci U S A ; 106(32): 13248-53, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19587234

RESUMO

To get mechanistic insight into the DNA strand-exchange reaction of homologous recombination, we solved a filament structure of a human Rad51 protein, combining molecular modeling with experimental data. We build our structure on reported structures for central and N-terminal parts of pure (uncomplexed) Rad51 protein by aid of linear dichroism spectroscopy, providing angular orientations of substituted tyrosine residues of Rad51-dsDNA filaments in solution. The structure, validated by comparison with an electron microscopy density map and results from mutation analysis, is proposed to represent an active solution structure of the nucleo-protein complex. An inhomogeneously stretched double-stranded DNA fitted into the filament emphasizes the strategic positioning of 2 putative DNA-binding loops in a way that allows us speculate about their possibly distinct roles in nucleo-protein filament assembly and DNA strand-exchange reaction. The model suggests that the extension of a single-stranded DNA molecule upon binding of Rad51 is ensured by intercalation of Tyr-232 of the L1 loop, which might act as a docking tool, aligning protein monomers along the DNA strand upon filament assembly. Arg-235, also sitting on L1, is in the right position to make electrostatic contact with the phosphate backbone of the other DNA strand. The L2 loop position and its more ordered compact conformation makes us propose that this loop has another role, as a binding site for an incoming double-stranded DNA. Our filament structure and spectroscopic approach open the possibility of analyzing details along the multistep path of the strand-exchange reaction.


Assuntos
Modelos Moleculares , Rad51 Recombinase/química , DNA/metabolismo , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Rad51 Recombinase/metabolismo , Análise Espectral , Tirosina/metabolismo
16.
Langmuir ; 25(3): 1606-11, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19123801

RESUMO

DNA strand exchange is of great importance in vivo for genetic recombination and DNA repair. The detailed mechanism of strand exchange is not understood in full detail despite extensive studies. Simplistic model systems in which molecular parameters can be varied independently are therefore of interest to study. We chose the surface of a positively charged liposome as a scaffold, which we recently demonstrated to be able to catalyze the exchange of fully complementary DNA oligonucleotides. We here study how single base pair mismatches affect the rate of strand exchange on the liposome surface. Interestingly, the rate of the exchange does not simply follow the stability of the duplex in solution, as determined by melting temperatures, but also depends sensitively on the position of the mismatch. For duplexes with similar melting temperatures, the exchange is much faster for a mismatch close to the end than for a mismatch in the middle of the sequence. Our results suggest that the single strands are stabilized by the liposome surface; therefore, the duplex is fraying more and the DNA opens up in a zipperlike fashion on the surface, increasing the probability of strand exchange. We also show that the competition between greater stability (higher Tm in solution) and higher concentration is important for the final composition of the duplex when a large excess of single strands is added to a complementary double-stranded DNA. Finally, the similar exchange rate constants for fully base-paired duplexes on the liposome surface when adding fully matched single strands or single strands with a mismatched base indicate that the rate is governed largely by separation of the initial duplex and not by the formation of the product duplex.


Assuntos
Pareamento Incorreto de Bases/genética , DNA/química , Lipossomos/química , Cinética , Lipídeos/química , Estrutura Molecular , Propriedades de Superfície , Temperatura de Transição
17.
Artigo em Inglês | MEDLINE | ID: mdl-18776455

RESUMO

We demonstrate that both the rate and yield of DNA strand exchange is significantly enhanced on the surface of positively charged liposomes compared to in bulk solution, using a FRET setup.


Assuntos
DNA/química , Lipossomos/química , Transferência Ressonante de Energia de Fluorescência
18.
J Gen Virol ; 87(Pt 11): 3151-3160, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17030847

RESUMO

Adenovirus serotype 5 (Ad5) vectors carrying knobless fibers designed to remove their natural tropism were found to have a lower fiber content than recombinant Ad5 with wild-type (WT) capsid, implying a role for the knob-coding sequence or/and the knob domain in fiber encapsidation. Experimental data using a variety of fiber gene constructs showed that the defect did not occur at the fiber mRNA level, but at the protein level. Knobless fiber proteins were found to be synthesized at a significant slower rate compared with knob-carrying fibers, and the trimerization process of knobless fibers paralleled their slow rate of synthesis. A recombinant Ad5 diploid for the fiber gene (referred to as Ad5/R7-ZZ(wt)/E1 : WT-fiber) was constructed to analyse the possible rescue of the knobless low-fiber-content phenotype by co-expression of WT fiber. Ad5/R7-ZZ(wt)/E1 : WT-fiber contained a knobless fiber gene in its natural location (L5) in the viral genome and an additional WT fiber gene in an ectopic position in E1. Knobless fiber was still synthesized at low levels compared with the co-expressed E1 : WT fiber and the recovery of the two fiber species in virus progeny reflected their respective amounts in the infected cells. Our results suggested that deletion of the fiber knob domain had a negative effect on the translation of the fiber mRNA and on the intracellular concentration of fiber protein. They also suggested that the knob control of fiber protein synthesis and encapsidation occurred as a cis effect, which was not modified by WT fiber protein provided in trans by the same Ad5 genome.


Assuntos
Adenoviridae/metabolismo , Antígenos Virais/biossíntese , Proteínas do Capsídeo/biossíntese , Capsídeo/metabolismo , Adenoviridae/genética , Antígenos Virais/química , Proteínas do Capsídeo/química , Linhagem Celular , Deleção de Genes , Vetores Genéticos/metabolismo , Humanos , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
19.
Biochemistry ; 45(37): 11172-8, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16964978

RESUMO

RecA protein and its eukaryotic homologue Rad51 protein catalyzes the DNA strand exchange, which is a key reaction of homologous recombination. At the initial step of the reaction, RecA proteins form a helical filament on a single-stranded DNA (ssDNA). Binding of double-stranded DNA (dsDNA) to the filament triggers the homology search; as homology is found, the exchange of strands occurs, and the displaced DNA is released. These are the principal steps of genetic recombination; however, despite many years of extensive study of RecA activities, the details of the mechanism are still obscure. A high-resolution structure of the active nucleoprotein filament could provide information to help understand this process. Using a linear dichroism polarized-light spectroscopy technique, in combination with protein engineering (the site-specific linear dichroism method), we have previously studied the arrangement of RecA in complex with ssDNA. In the present study, we have used this approach to search for structural variations of RecA at the atomic level as the DNA in the complex is changed from ssDNA to dsDNA. The structural data of the RecA-dsDNA filament are found to be very similar to the data previously obtained for the RecA-ssDNA complex, indicating that the overall orientation and also the internal structure of RecA in the active filament are not markedly altered when the bound DNA changes from single- to double-stranded. The implications of the structural similarities as well as the significance of some conformational variations observed for a few amino acid residues that may be involved in interactions with DNA are discussed.


Assuntos
DNA Bacteriano/química , Escherichia coli/enzimologia , Recombinases Rec A/química , DNA Bacteriano/metabolismo , Conformação Proteica , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...